
RYH
MICROCOMPUTERS

PNP La ye

LD T Tou

Publication Number 6500-10A

MCS6500

ICROCOMPUTE itm a itn 4 FAMILY BE 4 Bite

HARDWARE MANUAL

JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,

no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
©MOS TECHNOLOGY, INC. 1976

“All Rights Reserved”

MOS TECHNOLOGY, INC.

950 Rittenhouse Road

Norristown, PA. 19401 Revision A

PREFACE

The MOS Technology, Inc. MCS6500 Microcomputer System offering combines

the best features of second generation families into a product line that is both

a price and performance leader. A growing array of products and a unique micro-

processor family provide the customer with answers to the complex design prob-

lems confronting today's programmers and designers.

Integrated circuit fabrication techniques have moved microprocessors to the

forefront of complex, sophisticated components. The MCS6500 family benefits

from an advanced but proven process technology; N-Channel, Silicon Gate, and De-

pletion Loads are the key elements providing the high performance character-

istics obtainable in the single supply 5-volt system usage of the MCS6500 family.

The N-Channel, Silicon Gate technology is enhanced by use of Depletion Loads

which provides greater speed, lower power and smaller chip size than previous

processing approaches. Ion Implementation techniques are basic elements in pro-

viding control and stability of all processing parameters necessary to achieve

the electrical characteristics of the MCS6500 product line. These character-

istics provide a price/performance combination which establishes the MCS6500

family as the product offering best meeting the economic and technical demands

of today's system designs.

A word of explanation is in order regarding the MCS6500 product line, since

the concept of "Microprocessor Family" is indeed unique to the industry. It is

helpful to understand the basic product structure of the MCS6500 family.

The MCS650X Series represents the Microprocessor Family. Within this

family will exist a series of 8-bit devices offering a wide range of options and

capabilities for the customer. For the single-application customer, a varied

selection of devices is at his disposal in choosing the one that best meets his

specific needs. The "Microprocessor Family" concept has an even greater impact

-ii-

to the user who has a variety of applications, each of which can best be served

by a specific member of the family. It is important to this user that all of

the different microprocessors he selects maintain compatibility-—-both hardware

{fvnm +h + dantnton (LTOmM tne Sstanapoine of deations) and software. The

MCS650X product line is the first microprocessor family to achieve such a level

of compatibility because it was indeed conceptualized as a totally software and

hardware compatible family of microprocessors offering a range of performance

options from which The MCS6501 and MCS6502 are the

first two 40-pin members of the MCS650X family, each offering 65K bytes of

addressable memory. The MCS6503, MCS6504 and MCS6505 are the first 28-pin

versions with various options of addressing capability and control functions

from which to choose.

The MCS652X Series represents Peripheral Input/Output devices, the first

being the MCS6520 which is a direct replacement for the Motorola MC6820 Periph-

al Interface Adapter (PIA). Subsequent members of this series wiil include

devices with expanded I/0 capabilities.

The MCS653X Series represents combinational devices--those consisting of

various tradeoffs in RAM, ROM, 1/0, and Timing. The first of these is the

MCS6530 which contains 1K bytes of ROM, 64 bytes of RAM, an Interval Timer and

16 I/0 lines. Subsequent products in this series will provide the customer with

different combinations and new implementations of 1/0, Timing and Memory.

The MCS654X Series represents Read Only Memories specifically tailored to

meet the needs of large program storage required in many of the applications of

the MCS6500 family of products. The first of these will be a 16K (2K x 8) ROM,

the MCS6540. |

All of the MCS6500 product lines outlined utilize the same fabrication

techniques and meet identical electrical specifications. With this family of

compatible products the designer of today has at his disposal the elements

necessary to develop a system configured to meet the most demanding tasks.

Complementing the MCS6500 family is a selection of Random Access Memories

totally compatible with the microcomputer family. The first of these will be

the MCS6102, a 2102 equivalent, and the MCS6111, a 2111 equivalent.

To allow for minimum I/0 cost and maximum user flexibility, all of the

MCS6500 products are compatible with the M6800 bus structure.

-iii-

Chapter 1 of this manual introduces the reader to the MCS6500 Microcomputer

System. It includes an introduction to terminology, an explanation of system

components of a general microcomputer system, and then discusses the components

of the MCS6500 Product Family.

Chapter 2 is applications-oriented, with a discussion of system configura-

tion, the I/0 port, handshaking and specific examples on interrupt prioritizing,

interfacing with peripherals, direct memory addressing techniques, and control

of memories in the system.

Chapter 3 is directed at the important task of bringing up a system. It

takes the reader through a step-by-step procedure in analyzing, statically and

dynamically, the basic elements of the system to assist the user in a smooth

transition from a conceptual system to an operational one.

-iv-

TABLE OF CONTENTS

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

KH -

MRE PE eee Rep PRR Ee eee ee pe

ll ~) Nh

pany eo

ed Wo Wo Ww WW WW WW

FPPPPPwwwwnt UW BWN Ee

1
2
2
2
eZ.
2
2
2
3

Designing with Microcomputer Systems.

Introduction to Microcomputer Systems .

ol
2
3

Introduction to the MCS650X Microprocessor Family .

OU & Wh

Organization of a Microcomputer System.

Basic Operation . .

Addressing Terms and Concepts .

Bit . 8

Address Space se ee

The Address Page.

System Components .

Clock Generator .

Program Memory.

Data Memory . .

Input/Output Devices.
The Microprocessor.

.2.1 The MCS6501 .

.2.2 The MCS6502 . . .
-3 The MCS6503, MCS6504 “and “MCS6505.

MCS6500 System Concepts .

Bus Structure . .

Processor Interrupts.

Applications for Interrupts .

Interrupt Prioritizing.

System Interconnect for Interrupts.

Interrupt Servicing ._

Interrupt Request (IRQ) ..
Non-Maskable interrupt (NMI) .

System Reset.

-V-

b+ ODO WWOAAAALH LS & =

bY No

Hee Nh

- L5

~ 15
. 16

20
~ 22
~ 22
. 23
~ 25
~ 27
. 2/7

be

—

_

BE FPP REP RP EPP RPP PPP EP PPP RPE RB PPP PPR REPRE REE ERR ERE ESE

PREP RP RP Re

PRR Ree ee ep UUNAUNnUNUUuuu U2 U2 Wo Lo Wo Wo Wo WW We Wo NS NNOUUU RON

-4 The Microprocessors.

The MCS6501.

Introduction .

The MCS6501 Pinouts. oe ee ew

Vec, Vss--Supply Lines

ABOO - AB15--Address Bus .

DBO - DB/--Data Bus.

R/W--Read/Write.

DBE--Data Bus Enable .

VMA--Valid Memory Address.
BA--Bus Available.

RDY--Ready . 2

NMI--Non-Maskable Interrupt.

-10 IRQ--Interrupt Request .

-1l1 RES--Reset . .

The MCS6502. ee

Product Characteristics. . .

Device Timing-—-Requirements and Generation .

SYNC Signal.

S.0--Set Overflow.

The MCS6503, MCS6504 and MCS6505 . WNNNNNEPRFP ERP PREP RP PPR PPE

WOANKAUPWNHH

NNINONYMNNNMNHNNHMNNN KE

fm WN Fr

-> Peripheral Interface Device--MCS6520 .

5.1 Introduction . ce ew ee ew

5.2 Organization of the "MCS6520. ee ee es
5.2.1 Data Input Register. .
5.2.2 Control Registers (CRA and CRB) .

5.2.3 Data Direction Registers (DDRA, DDRB).

5.2.4 Peripheral Output Registers (ORA, ORB)

5.2.5 Interrupt Status Control . . .
5.2.6 Peripheral Interface Buffers (A, B) “and Data

Bus Buffers (DBB).... .
5.3 Interface Between MCS6520 and the “MCS650X_ Family

of Microprocessors .

Data Bus (DO-D7)

Enable (E) ce ew ew

Read/Write (R/W) we ee : ce ew
Chip-Select Lines (CSI, cs2, G53). oe ee
Register-Select Lines (RS, RS1).

-l1 Reading the Peripheral A I/O Port.
-2 Reading the Peripheral F B I/O Port.
Reset (RES) .

-l. Control of TROA.

-2 Control of IRQB.

-Vi-

50
51

54
55
55
55

55

56

56
56
56
58
59
59
63
63
63
64

1.5.4 Interface Between MCS6520 and Peripheral Devices.

1.5.4.1 Peripheral 1/6 Ports.
1.5.4.1.1 Peripheral A 1/0 Port (PAG—PAT)

1.5.4.1.2 Peripheral B I/0 Port (PB#~-PB7) . .

1.5.4.2 Interrupt Input/Peripheral Control Lines (CAL,

CA2, CB1, CB2). 2 a

1.5.4.2.1 Peripheral A Interrupt Input/Peripheral
Control Lines (CB1, CB2). .

1.5.4.2.2 Peripheral B Interrupt Input /Peripheral

Control Lines (CB1l, CB2). ce ee

1.5.5 Summary of MCS6520 Operation.
1.5.5.1 Control Register Operation. .
1.5.5.2 MCS6520 Operation in MC6500 Systems .

1.6 Peripheral Interface/Memory Device--MCS6530 .

1.6.1 Introduction.
1.6.2 Pinout Description.

1.6.2.1 Reset (RES)...

1.6.2.2 Input Clock...
1.6.2.3 Read/Write (R/W). .
1.6.2.4 Interrupt Request (TRO) oo
1.6.2.5 Data Bus (D-D7) .

1.6.2.6 Peripheral Data Ports .
1.6.2.7 Address Lines (A0-A9)

1.6.3 Internal Organization .
1.6.3.1 ROM--1K Byte (8K Bits).
1.6.3.2 RAM--64 Bytes (512 Bits).
1.6.3.3 Internal Peripheral Registers .
1.6.3.4 Interval Timer.
1.6.4 Addressing. . .
1.6.4.1 One-Chip Addressing .
1.6.4.2 Seven-Chip Addressing .
1.6.4.3 1/0 Register-~-Timer Addressing.

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM

2.

BO BO NH KR bh ho eo 8e« @ @ @ @ Bh RO BD KD KH bY oo ¢ ss. oe €« mwWWwWWwN EF

1

fo

Th

In

el
2

e System Configuration Task .

put/Output Techniques .

The General Purpose Input/Output (1/0) Port .
The Special Purpose Peripheral Interface Device .

Configuring the General Purpose I/0 Port.

Assignment of Outputs . ee ee

Assignment of Inputs.
Power-On Considerations .

-Vii-

. 88
- 90

. 84

. 85

~ 85
- 85
. 87

2.2.5 Handshaking. oe 94
2.2.5.1 Handshaking on Data “Transfers "from the Processor 94
2.2.5.2 Handshaking on Data Transfers into the Processor 95

2.3 Configuring the Interface Between the Microprocessor
and the Support Chips. 99

2.3.1 Assignment of Addresses in the MCS6500 System. 99
2.3.1.1 ROM Address Assignment 102
2.3.1.2 RAM Address Assignment ce . 102
2.3.2 Additional Address Assignment Techniques 2 2 « - « 104
2.3.3 Interrupts... oe ee . 104
2.3.3.1 Interrupt Prioritizing ee ee . - 106
2.3.3.2 Example 1: Selecting the Interrupt ‘Vector . . 106
2.3.3.3 Example 2: Using the Processor Software Power . 108
2.3.4 The Application of RDY to Controlling the Mem-

ory Interface. 2. 2 ee ew wee . 108
2.3.4.1 Interface Slow PROMs . . . 108
2.3.4.2 Direct Memory Address (DMA) “Techniques . . . 112
2.3.4.3 Conirol of Dynamic RAMs in the MCS6500 System. . 113
2.3.5 Hold-Time Control--MCS6501, . 117

2.4 Additional System Considerations%. - Li9

2.4.1 Peripheral Interface Devices 119
2.4.2 RAM. 2... we we ew we we we ee . 119
2.4.3 ROM. . 2... 1 ee ew ew ee

2.5 Evaluating System Performance. 121

CHAPTER 3 BRINGING UP THE MCS6500

3.0 Introduction to Microcomputer Testing. 123

3.1 Static Testing... ... 2... ee ewe ww ew ee 124

3.1.1 Introduction... ee ee ew we ww ww we ew ew 124
3.1.2 Single Cycle Execution se ee ww we we we ww ew ew 124
3.1.3 Single Instruction Execution. 127

3.2 Dynamic Testing. 2... eww eae ~ 130

3.2.1 Introduction... oe 8 ew ww we ww we wh tw he 6130
3.2.2 Externally Induced Loops ee ee ew ew hw - 130
3.2.3 Software Loops ee eee eee » 132

~Viii-

3.3 System Diagnosis Using Hardware Programmer Aids. . . 133

3.3.1 KIM Keyboard Input Monitor 135
3.3.2 TIM--Teletype Input Monitor. 136
3.3.3 MDT--Microcomputer Development Terminal. 138

3.4 Microprocessor Start-Up Procedure. 139

Introduction... eee ew ww ew ew ww ew 139

System Power--Step 1 ee ee we we ww ww we ew we ew 139

Basic System Timing--Step 2.-.. 140

System Reset--Step 3 oe eo ew ew ee 140
Static Analysis of System Details. oe ew ww ew we 144
Dynamic Analysis of System Details 145

-l Address Bus Verification 145
-2 Data Bus Verification. +. 146

Detailed Component Check 6 «© «© © «© «© «© 148

NNNE

lo Go Ww bo & W WH WH W Ppp peep- UPR EP EONE

APPENDIX A... ww ww ee ee ee ee ee ee ee we Al

-1xX-

LIST OF FIGURES

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

°

ee WONKDUBWNHE

Organization of Microcomputer System.e.

Address Bus and Relation to Memory Field.

Portion of Read Only Memory Matrix. . . ‘
Pinout Comparison: MOS Technology MCS6501, Motorola "MC6800
Clock and Read/Write Timing Table (1 MHz Operation) . .

Two-Phase Clock Timing. ee ew

Timing for Reading Data from Memory of ‘Peripherals. oe

Timing £ 1.0L Writing Data to Memory or Peripherals.

Interrupt Wire OR'd Hardware Configuration from Peripheral

Interface Devices to Microprocessor4+ee-s.

Sequence to Service IRQ . . . 2... 2. 2 © © © © © © © © © ©

MCS650X Internal Architecture+4.24-+ se ees
MCS6501 Pinout Designations . «4... 2. «© © 2» © «© we we ww
MCS650X System Timing Diagram... . oe ee
Examples of Interrupt Recognition by MCS650X. oe ew

MCS6502 Pinout Designation.ee.-. 2 ee

MCS6502 Time Base Generation--Crystal Controlled. oe

MCS6502 Parallel Mode Crystal Controlled Oscillator .

MCS6502 Series Mode Crystal Controlled Oscillator .

MCS6502 Time Base Generator--RC Network
MCS6502 SYNC Signal oe ee
Functional Features of MCS6503, MCS6504, "MCS6505, ce ee
MCS6503, MCS6504, MCS6505 Pinout Designations ... oe
MCS6503, MCS6504, MCS6505 Time Base Generation Crystal

Controlled. ... ee ew ee
MCS6503, MCS6504, MCS6505 Time Base Generation C Ne twork .
Basic MCS6520 Interface Diagram... . . .

MCS6520 Pinout Designations Peripheral Interface Adaptor. .

MCS6520 Internal Architecture... oe ee ew ee
Microprocessor Interface Timing--Read er

Microprocessor Interface Timing--Write.5666-s

Peripheral A Interface Timing2..ee-e

Peripheral B Interface Timinge.ee.

Peripheral I/0 Port A Buffer. 6.2. ee eee
Peripheral I/O Port B Buffer. 2.4.46.
Control Register Bit Designations+e-.

1.30 Control of Interrupt Inputs CAl, CBl. 68

i.3la Control of CA2 (CBZ) as Interrupt Inputs (Bit 5 = "O"). 68
1.31b Control of CA2 Output Modes . . . 2. 2. 1 6 ee we ew ew ew ww ew ee 69

1.3lce Control of CB2 Output Modes 2.6. «© © © © © « & 69
1.32 MCS6530 Pinout Designation. . . 1... 2 «© 2 we we ew ew ew ww ew ew ew 72

1.33 MCS6530 Internal Architecture . . 1... 6 ee ee ew we ee ee 75
1.34 Basic Elements of Interval Timer.242464242. 77
1.355 Example of Interrupt Generated by Interval Timer. 79

1.36 MCS6530 One-Chip Address Encoding Diagram 81
1.37 MCS6530 Seven-Chip Addressing Scheme.2... 82
1.38 Addressing Decode for I/0 Register and Timer. 83

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 Control of Low Order Bit of MCS6520 Output Register 89
2.2 MCS4520 Control of Transistor Driven Solenoids. .. .: 2 2 2 2 91

2.3a MCS6520 Control of PNP Transistor Driving Solenoid Coil 2 eee 93
2.3b MCS6520 Controlling Both Power and Drivers of Solenoid Cell .. 93
2.4 MCS6520 Driving TTL Buffers ~ 2 - 93
2.5 MCS6520 Controlling Solenoids with Enable Signal “and TTL.

Interface we ee ww ew we ew ew we we et eww 94
2.6 Write Handshake Sequence. ee ee ww we ek we we ee we ee OF
2.7 Read Handshake Sequence ce ee we we we we ee we 98

2.8 Organization of Microcomputer System. oe » » » 100

2.9 Example of "AND" Function Using High Order Address ‘Lines. » . L101
2.10 Typical Address Assignments... . ee ee ew we hw ©6103
2.11 Page Zero Chip-Select Addressing Scheme ee ee ew ww ee eh) 6105

2.12 Selecting the Interrupt Vector. ee ew ew ew ew ee) 6107

2.13 Using MCS6520 for Jump Indirect Interrupt Routines. 2 2 « « » LOO

2.14a Priority Encoder Connected to Low Order Bits of MCS6520 ... 110
2.14b Priority Encoder to Peripheral Interface Scheme... . lil
2.15 Software Program to Implement Interrupt from above Hardware

Configuration... . : ee ee ee ew we eh eh wh eh eh CULL

. Interfacing Scheme for Slow PROMs a

2.17 Logic Used to Generate Bus Available Signal for DMA

Applications. .. . oe ew ee ©6114

2.18 Control Logic for Refresh Signal for. Dynamic "RAMs os we © © ©) 116
2.19 Timing Analysis of Data Hold Time2..2.+.. «118

-Xi-

CHAPTER 3 BRINGING UP THE MCS6500

WwW HWW WWW WwW Ww WwW Ww Ww eo ee e «© e# e« e« «© © «© oe @

Ome WH PR

Suggested Static Test Control Logic.

Single Cycle Timing.
Microprocessor Single Cycle ‘Data Trap.

Single Instruction Execution .

Suggested Configuration for Dynamic “Reset ‘Testing.
MCS6501 Clock Timing Signais .

Improper Clocks. . 2

Proper Clocks. .
Address Lines in MCS650X Systems .

Proper Address Lines . oe

Excess Address Line Loading.

The Data Bus in MCS650X Systems.

-Xii-

. 125

. 126

. 128

. 129

. 131

. 141

. 141

. 141

. 142

. 142

. 142

. 143

CHAPTER 1

THE MCS6500 MICROCOMPUTER SYSTE)

The past several years have seen the development of an exciting new concept

in electrical design. Conventional system design is rapidly being revolution-

ized by the large-scale, single-chip programmable microprocessor. The micro-

‘computer started out as a relatively simple, difficult-to-use programmable

device capable of handling simple control or computational problems. However,

it has since matured into a powerful, inexpensive, easy-to-use device capable

of controlling all but the most complex of systems.

Three primary attributes of microprocessor-based systems are bringing

about this revolution. They are:

1. Microprocessors allow a significant reduction in overall systems cost

for products currently in production. Re-designing their products

around the microprocessor is permitting many manufacturers to develop

or maintain a price advantage over competitors.

2. The reduction in cost of microcomputer systems is opening up vast new

markets for microprocessors. A great number of systems which were

simply impossible or were at best impractical, are being designed and

marketed today using the modern, low-cost microprocessors.

3. At the same time the price of microprocessors is dropping, the cap-

ability is rapidly expanding. This also allows them to be designed

into more systems than ever before.

Anyone contemplating a new design or trying to reduce cost in an existing

design must ask himself if a microprocessor will solve his problem.

The success of the microprocessor is based on the fact that it allows the

design engineer and programmer to apply their expertise in solving a multitude

of design problems using cost effective ICs. A small number of large inte-

grated circuits can be configured to solve design problems from the simplest to

the most complex.

If the same integrated circuits are used to solve a multitude of unique

designs, the first question one must ask is, ''What makes them unique?" The

answer is: Programming. Although many different designs may share common hard-

ware, each has its own unique program. This brings us to another very important

characteristic of microcomputers. The integrated circuit which makes each sys-

tem unique is the "Read-Only Memory" (ROM) which stores the system program. It

is relatively easy for the integrated circuit manufacturer to establish the

particular pattern which uniquely defines the data in a ROM. As a result, the

typical charge for "designing" a ROM is generally less than 10% of the cost of

designing a totally custom logic chip. Further, the user benefits from high

volume standard product which is still unique for his own application due to the

"customization" of one element of his system.

1.0 DESIGNING WITH MICROCOMPUTER SYSTEMS

It will probably surprise many designers who are approaching the subject

of microcomputer design for the first time when they discover that designing a

system around a microprocessor is much the same as designing around conventional

logic. The total approach is the same; the process differs only in the imple-

mentation of each step.

A brief examination of the system design process will help to put micro-

computer design in perspective and will aiso assist in clarifying the purpose

of this manual. One can expect to perform the following steps in designing a

system:

1. Define the requirements of the system. What functions should it

perform?

. Define basic system components. 2

3. Complete design details.

4

5. Finalize design and begin production.

Step 1 is true for any system and, in general, for any product. Step 2 is

the first point of departure for microprocessor based designs. It is at this

time that the designer must consider the possibility of using a microprocessor

in his system. For the very cost-sensitive application he must look very care-

fully at total systems cost. Can a microprocessor do the iob within the price

constraints imposed? At the other end of the design spectrum, the system de-

signer must evaluate the capability of microprocessors to assure himself that

the available devices can in fact perform the required function. Will a micro-

processor be fast enough to run the system? Will it take more than one proces-

sor?

The purpose of this manual is to teach the designer how to effectively con-

figure a microprocessor-based system and to evaluate the performance of the sys-

tem. After this step, the design will be completed by development of the system

program. Implementation of the system program is discussed in the Programming

Manual.

1.1 INTRODUCTION TO MICROCOMPUTER SYSTEMS

1.1.1 Organization of a Microcomputer System

Figure 1.1 illustrates the basic organization of a microcomputer

system. It is important that the designer understand the operation of each

component as well as the operation of each data path in the system. Each

of these is discussed separately below. In addition, the following discus-

sion describes the operation of the overall system and the use of the vari-

ous signal paths.

+

1.1.2 Basic Operation

The microcomputer is a system which can be characterized as very

simple in its detail and very complex in its overall operation. It

carries out rather complex tasks by performing a large number of simple

operations. Control of the system is primarily the responsibility of the

processor. By putting out addresses to program memory, it controls the

sequence of operations performed and by interpreting and executing the

instructions which it receives from the program memory, it controls the

actual operations carried out by the system. The processor is by far the

most complex device in the system. For this reason, it is important to

overall system cost that this part stay the same for many different appli-

cations. In this way, the relatively high development cost can be shared

by thousands of users. In addition, those thousands of users can all bene-

fit from the economics of large-scale production.

The processor causes the system to perform the desired operations by

reading the first instruction in the program, and performing the very simple

task dictated by the specific pattern of bits in this instruction (referred

to as "executing" that instruction). It then goes on to the next instruc-

tion in the program and executes it. This simple operation of fetching an

instruction and executing it is performed over and over, each time on the

next instruction in sequence. In this way the program instructs the pro-

cessor to bring about the desired system operation.

1.1.3 Addressing Terms and Concepts

Before entering into a detailed discussion of the system operation,

it would be useful to detine a tew terms and to introduce a few concepts

concerning addressing. This should assist in an understanding of the

detailed discussions which follow.

~4-

1/0 PORT

—_—_—-~

DATA PERIPHERAL

MEMORY MEMORY INTERFACE

(ROM) (RAM) DEVICE

Pa ah At
|| Bani Wi td

ee ee DATA . | » BUS
WRITE fit ENABLE < r] |

CLOCK

MICROPROCESSOR

GENERATOR | INTERRUPTS

OTHER
CONTROL
SIGNALS

Organization of Microcomputer System

FIGURE 1.1

1.1.3.1 Bit

The term "Bit'’ is a general term referring to anything that can be

assigned to binary value, i.e., anything that can be given a value of 0 or

1. Thus, an eight-bit data bus is a set of 8 lines which can be assigned a

value of logic 0 or logic 1. On these lines, the logic values are repre-

sented by two different voltages or currents. Similarly, a 16-bit binary

display can be built with 16 individual lamps. The logic 1 is represented

by the lamp being on.

In this text, reference is made to an 8-bit data bus, a 16-bit

address bus, 4 bits of data, 8-bit registers, etc. In all cases, defini-

tion of a bit remains the same.

1.1.3.2 Address Space

The concept of an address space is very useful in understanding

microcomputer systems. The term "address space" refers to the total set of

addresses which the microprocessor can generate. For example, if a pro-

cessor had only 4 address lines, it could generate the addresses 0 - 15

(binary 0000 to binary 1111). This would not be adequate for any microcom-

puter operation and, consequently, the typical processor has between 12 and

16 address lines. Since each line can assume a value of 0 or 1, these de-

vices can usually address from 4,096 to 65,536 separate addresses. Figure

1.2 contains a pictorial representation of the address space available in

a typical 8-bit microcomputer with sixteen address lines. In addition to

the general address space, this figure introduces the PAGE concept dis-

cussed below.

1.1.3.3 The Address Page

The concept of a PAGE in memory is very important in 8-bit micro-

computer systems. The internal organization of an 8-bit processor is

around 8-bit registers, 8-bit parallel data paths, etc. Most arithmetic

operations, logic operations, etc. take place on 8 bits of data at a time.

Likewise, the 16-bit counter which determines which instruction is being

executed is actually divided into two 8-bit busses. One contains bits 0 - 7

(low order address bits) and the other contains bits 8 to 15 (high order

address bits). With this in mind, one can think of the address space shown

in Figure 1.2 as consisting of 256 blocks, each consisting of 256 specific

amtt
address locations. Each of these blocks is referred to as a "PAGE

-Z-

BINARY ADDRESS

High Order

15141312 1110 9 8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

111i 1 1 1 0

Low Order

DECIMAL HEXADECIMAL
Address Code

WORD
Page Byte

Number | Number 5 4 3210 NUMBER

Address Bus and Relation to Memory Field

FIGURE 1.2

ADDRESSABLE

MEMORY FIELD

(65536 Bytes)

\\----} --- JESS este
:

DATA BUS

of memory. The high order 8 bits of the address (ADH) therefore indicates

in which page the address is located, and the low order 8 bits (ADL) indi-

cates a specific address on that page.

The first page in memory (ADH = 00) is referred to as page zero.

The next higher order page (ADH = 01) is referred to as page 1, etc.

1.1.4 System Components

The block diagram in Figure 1.1 shows the basic components which

comprise all microcomputer systems. Each of these blocks may consist of

one or more integrated circuits and, in fact, the functions may be com-

bined into single chips. However, the basic operation of each remains the

same.

1.1.4.1 Clock Generator

The clock generator produces a continuous waveform which is

normally used to control all signal transitions within the system. t acts

as the "heart" of the system. In the typical microcomputer system the

address bus will change during one half of the clock cycle and the data

will be transferred during the second half. In addition to interpreting

the address, data and control lines, the processor and support chips must

also examine the system clock to know when to put out data or when to latch

in data generated by another device.

1.1.4.2 Program Memory

The program memory stores the sequence of instructions which com-

prises the system program. Like any memory, this unit puts a pattern of

1's and 0's on the data bus in response to the address on the address bus

input. Each unique address selects a set of 8 binary bits and places this

data on the data bus. Note that it does not matter where the address is

generated or where the data is used; the memory simply obeys the rule that,

given an address, it will put the corresponding 8 bits of data on the data

bus.

A unique characteristic of most microprocessor-based systems is

that the program is usually stored in "READ-ONLY" memories. The data is

stored in a fixed pattern of bits in the memory. Figure 1.3 shows a sec-
Baw AL 2 mee ne a OTA NAT
AVI VL Ga SCIMLLULIUULLUL RADAURUINL

rug . fmnrens
i remory \NUM).

Portion of Read Only Memory Matrix

FIGURE 1.3

Since the data is stored in the physical configuration of the device, the

data will not be lost when power is disconnected from the chip. In addi-

tion, it is only necessary to insert the device into its socket to pro-

vide the system program. The term "Read-Only Memory" refers to the fact

that, in system operation, it is impossible for the processor to cause data

to be stored in the device. The processor can only "READ" the data stored

in the device during the manufacturing process. "READING" a memory in-

volves the simple process of supplying an address to the device to obtain

the corresponding 8 bits of data on the data bus.

1.1.4.3 Data Memory

For temporary storage of input data, the results of arithmetic

operations, etc., the microcomputer uses a Read/Write Memory, commonly re-

ferred to as a RAM (Random Access Memory). The processor can store data

in the RAM (called "WRITING" the RAM), or it can read back the data it has

stored. As in the ROM, each address corresponds to eight memory cells.

However, in a RAM the data must be placed into the memory by the processor

and is stored in cross-coupled latches. Turning off the power to the chip

will cause the loss of all data stored there. The data is said to be

"“vZolatile." Data in a ROM is not lost when power is disconnected from the

device; the data is therefore referred to as "non-volatile."

"WRITING data into a RAM takes place when the Write-Enable signal

goes to the write state. At this time the data on the data bus will be

stored into the eight memory cells corresponding to the address on the ad-

dress bus. The processor can READ this same data by supplying the proper

address and keeping the Write-Enable line in the Read state.

1.1.4.4 Input/Output Devices

The Input/Output Devices are the circuits which interface the

printer, keyboard, displays, etc. to the processor. These allow the pro-

cessor to read data from the keyboard, to test the state of sensors and

switches, and to display or to print the results of internal operations.

No matter where data is generated, it must be in the form of 1's

and O's before the processor can work with it. Likewise, actions to be

initiated by the processor must be triggered by 1's and 0's transferred by

the processor to a set of output lines.

The transfer of data from the processor to an output device is

usually accomplished by "WRITING" the data out in much the same manner as

the processor writes data into RAM. Each set of 8 input or output lines

(referred to as "PORT") is given an address and the processor simply writes

data to that address. For each "1" written out to the peripheral port an

output is set high and for each "0,"" the corresponding output is set low.

Although the basic concept of peripheral control is simple, the

actual implementation of these interfaces can involve many sophisticated

techniques designed to allow the processor to maximize its ability to con-

trol peripherals and perform internal operations concurrently. These tech-

niques are discussed in detail in Chapter 2 of this manual.

1.1.4.5 The Microprocessor

At first glance it may seem strange to discuss the support chips

in the microprocessor-based system before mentioning the processor. How-

ever, this approach is necessitated by the fact that most of the inputs and

outputs on the processor are aimed at properly controlling the support chips

and peripheral devices discussed above.

The address bus, the bi-directional data bus and the Write-Enable

iine allow the processor to exercise direct control over the rest of the

system. The address bus puts out addresses to control the source or

-10-

destination of data transfers. These addresses are derived from various

sources within the processor. During the fetch of instructions from pro-

gram memory, the addresses are usually derived from a counter which con-

Fh trols execution of sequential instructions. Addresses for data transfers

between the processor and RAM are usually derived directly from the program

or are calculated from the data in the program and data in internal regis-

ters.

The bi-directional data bus serves as a path for transferring data

into and out of the processors. The direction of the data transfer is de-

termined by the Write-Enable line.

Another special function found in modern microcomputer systems is

the interrupt. This function allows the peripheral devices to directly

affect the operation of the processor. When the interrupt signal is gener-

ated, the processor usually completes its current instruction and then,

under program control, will respond to the interrupt. The importance of

this function is that it allows the processor to execute the system program

without requiring the system program to monitor the status of the peripheral

device. The software which handles the operation of each peripheral will

be executed only when required.

-ll-

1.2. INTRODUCTION TO THE MCS650X MICROPROCESSOR FAMILY

The initial MOS Technology, Inc. microprocessor offering consists of the

MCS6501, which is MC6800 compatible; the MCS6502, which has clock drivers on-

chip; and three 28-pin processors, the MCS6503, MCS6504, and MCS6505. All of

these devices are aimed at a specific range of applications. Therefore, it is

important to develop an understanding of the capabilities of each and the dif-

ferences between them.

The MCS6501 has application in existing M6800 systems where conversion to

the MOS Technology, Inc. processor is to be performed. This processor requires

the full high-level two-phase clocks of the M6800 system. The MCS6502 is ex-

pected to find application in aii new designs which require a full 16-bit ad-

dress bus. However. in the small cost-sensitive system, the 28-pin processors

can represent a savings in both processor cost and printed circuit board area.

The MCS6503, MCS6504, and MCS6505 will find application in all new designs where

the system will operate within the addressing limits.

1.2.1 The MCS6501

The MCS6501 is the first member of the microprocessor family to be

introduced. It is designed to be pin compatible with the M6800 and there-

fore conversion from the MC6800 to the MOS Technology, Inc. MCS6501 re-

quires only that the system be reprogrammed. This allows the M6800 user

to take full advantage of the software power (addressing modes, etc.) of

the MCS650X processor family.

Although the conversion process is fairly simple, it is important to

keep in mind the differences between the MC6800 and the MCS6501. The pins

on the MCS6501 all do the same general function as those on the MC6800 but

the function performed may differ somewhat in detail. Figure 1.4 contains

a detailed, pin-for-pin comparison of these two processors. A thorough

understanding of this table, along with an understanding of the MCS650X

software will allow the system designer to perform the conversion with very

little difficulty. The MCS6501 provides a full 16-bit address bus, 8-bit

data bus and two interrupts.

-12-

PIN #

\O

38

39

MOTOROLA

6800

Vdd

AG

Al

A2

A3

A4

AS

A6

A7
an
Ao

AQ

A10

All

MOS TECHNOLOGY

Ready | 22

$1 (in) | 23
IRQ 1 24

vMA r
NMI 26

BA 27

Vdd | 28

AG 29

Al 30

A2 31

A3 32

AA 33

A5 34

A6 35

A7 36

AS 37

FX) 38%

A10 39%

All 40

* DIFFERENCE

MOTOROLA 6800

Halt - Stops processor after

completing current instruction.

Address Bus in off state.

VMA - Signal determines when

address from processor is

Valid.

Address Bus uses Tri-State

Output Buffers.

No Connection

T.S.C. - Three-State Control

Controls all Three-State

Buffers, Address Bus and

Data Bus.

MOTOROLA

6800

MOS TECHNOLOGY

6501.

Ai2 AlZ2

Al3 Al3

Al4 Al&é

Al5 Al5

D7 D7

D6 D6

D5 D5

D4 D4

D3 D3

D2 D2

D1 D1

D¢ Dg

R/W R/W

N.C N.C

DBE DBE

$2 (in) $2 (in)

N.C. N.C.

TSC

Reset Reset

S

MOS TECHNOLOGY 6501

Ready - Stops Processor during

current instruction. Address
Bus reflects current address

being read.

VMA - No need for Valid Memory

Address Signal. All addresses

are valid at all times. This
pin is internally tied to Vdd

and can be used as a VMA signal

in high state.

Address Bus uses TTL level

Output Drivers.

N.C. - No need for TSC since

Address is not Three-State and

DBE Controls Three-State of

Data Bus.

Pinout Comparison

MOS TECHNOLOGY INC. MCS6501, MOTOROLA MC6800

FIGURE 1.4

-13-

1.2.2 The MCS6502

The second member of the processor family is a 40-pin device which

provides all the features of the MCS6501, along with an "on-the-chip" oscil-

lator and clock drivers. This device should be used in all new designs

which require the capability of the 40-pin processors. The clock drivers

can be driven with a single TTL level square wave or with the internal

oscillator. The frequency of operation of the internal oscillator can be

set by attaching an R-C combination to the chip and, if the clock stability

is required, by attaching a crystal between the oscillator and ground.

This feature totally eliminates the problems encountered in generating

MC6800 type clock signals. |

As in the MCS6501, the MCS6502 provides a full 16-bit address bus,

8-bit bi-directional data bus and two interrupts. In addition, the MCS6502

provides a sync signal which indicates those cycles in which the processor

is fetching an operation code from program memory.

1.2.3 The MCS6503, MCS6504 and MCS6505

Three 28-pin versions of the processor are available. These three

differ in the number of address lines and the number of interrupts provided.

Having all three options available allows the designer to tailor his pro-

cessor to his particular application.

The MCS6504 provides a total of 13 address pins and can, therefore,

address a full 8K bytes in its memory space. However, this part provides

only one interrupt request input, IRQ. The non-maskable interrupt (NMI) is

not included in the pinouts of this device.

The MCS6503 and MCS6505 provide one less address line. In the

MCS6503, this address line is replaced with a second interrupt input, NMI.

In the MCS6505, this address line is replaced by the RDY signal. All other

functions on these processors are the same. The details of each of these

pins are discussed in the following sections.

The operation of the various busses, control signals, etc. is ex-

actly the same on all MCS650X products with all processors obeying the sys-

tem specifications discussed in Section 1.3 of this manual.

-14-

1.3 MCS6500 SYSTEM CONCEPTS

1.3.1 Bus Structure

The MCS6500 microcomputer system is organized around two primary

busses. Each bus consists of a set of paraliel paths which can be used to

transfer binary information between the devices in a system. The first

bus, known as the ADDRESS BUS, is used to transfer the address generated by

the processor to the address inputs of the memory and peripheral interface

devices. The processor is the only source of addresses in a normai system,

so this bus is referred to as "unidirectional." The address bus consists

of 16 lines on the MCS6501 and MCS6502. This allows the processor to

access (READ or WRITE) up to a total of 65,536 memory words, registers, etc.

In the MCS6503, MCS6504, and MCS6505, the address bus contains fewer lines;

therefore, they operate with a smaller "address space." This is discussed

in detail in Section 1.1.3.

The data bus in the MCS6500 microcomputer system consists of an 8-bit

bi-directional data path. These lines transfer data from the processor to

the selected memory word, etc. during a WRITE operation and from memory

into the processor during a READ operation. All data and all instructions

are transmitted on the data bus.

The direction of the data transfers is controlled by the READ/WRITE

(R/W) line on the processor. This line performs the Write Enable function

described in Section 1.1.4.3. As long as the R/W line is high (> 2.4V DC),

all data transfers will take place from memory to the processor (READ opera-

tion). This line will go low only when the processor is going to WRITE data

out to memory.

As in most microcomputer systems, the timing of all data transfers

is controlled by the system clock. The clock itself is actually two non-

overlapping square waves. This two-phase clock system can best be thought

of as two alternating positive-going pulses. This text will refer to the

clocks as Phase One and Phase Two. A Phase One clock pulse is the positive

pulse during which the address lines change and a Phase Two clock pulse is

the positive pulse during which the data is transferred. The timing of the

signals on the Address Bus, Data Bus, and R/W line are shown in Figures 1.5

through 1.8. All signal transitions are specified with respect to the

Phase One and Phase Two clock signals.

-15-

In particular, the address lines and the R/W line will stabilize during

Phase One, and all data transfers will take place during Phase Two.

The specific timing specifications for operating at a 1 MHz clock

rate are also given in Figure 1.5. Note that the sequence of operations

will be the same for ail processors. However, these timing specifications

will change for devices which are specified to operate faster than 1.0 MHz.

The address is guaranteed to be stable 300 nanoseconds after the leading

edge of Phase One, and the data must be stable 100 nanoseconds before the

trailing edge of Phase Two. At 1.0 MHz operation, this allows the memory

devices approximately 575 ns to make data available on the data bus. Al-

though there are many factors which determine the actual data and address

generated within the system, it is important to keep in mind that the

basic operation shown in Figures 1.6, 1.7 and 1.8 does not change. These

figures specify the system bus discipline which applies to all MOS Technol-

ogy, Inc. processors and support chips.

Through the generation of processor interrupt signals, the peri-

pheral devices (printers, keyboards, etc.) can request service from the

processor. Although this technique is relatively simple in concept, the

proper generation and control of interrupts is one of the most important

problems which the designer will face. Total system capability can be

greatly expanded if the processor is required to execute the peripheral

software only when it is absolutely necessary. This is the goal of a well-

planned interrupt structure. The interrupt structure is very much a sys-

tems sophistication problem since it is the entire system which must pro-

perly respond to the interrupt inputs. In fact, the actual signals to

which the system must respond are usually applied to the inputs of a peri-~

pheral interface device. In this device, the interrupts are enabled, dis-

abled and latched until the interrupt is processed. The peripheral inter-

face device generates signals which meet the requirements of the processor

interrupt inputs.

There are two interrupt input lines to the microprocessor, IRQ

(Interrupt Request) and NMI (Non-Maskable Interrupt).

ué Leguiremenis of the two interrupt inputs ditter, they will

be discussed separately below. The response of the processor to these in-

puts is very similar, however, after the interrupt is recognized. For this

-16-

-LI7

CHARACTERISTIC

Cycle Time

Clock Pulse Width Pl

(Measured at Vcc-0.2v) 42

Rise and Fall Times

(Measured from 0.2V to Vcc-0.2V)

Delay time between Clocks

(Measured at 0.2V)

CHARACTERISTIC

Read/Write Setup Time from|MCS650X

Memory Read Access Time Tp

Toye ~ “ans 7 Tposy 7 tY)

Data Stability Time Period

Data Setup Time from MCS650X

Clock and Read/Write Timing Table (1MHz Operation)

FIGURE 1.5

01

92

R/W

ADDRESS
FROM MPU

DATA FROM
MEMORY

2.0V

i 2.0V

0.8V

Two Phase Clock Timing

FIGURE 1.6

vec -0.2V

2.0V

2.4V

Ss

2.4v |

0.8V

TACC TDSU TH

rr 20.0 Las Doe te. IN 4 LeAnn Manan nines Av Dauinhanuntla
LUNINg JOU INCUULNS LUG JEU CTU YY UT 8 UPL be

-18-

VCC - 0.2V
91 02V

0 ~ VCC -0.2V |

RW 0.8V AY Se

PC rrr———s

ProMMPU 30V_ \\S>L | MSs>

DATA
FROM MPU

DBE = 92

Timing for Writing Data to Memory or Peripherals

FIGURE 1.8

-19-

reason, the internal operation of the processor during interrupt servicing

is discussed in the detailed analysis of the processor chip. Instead, this

section will concentrate on the system level considerations which are re-

quired to assure proper operation of the interrupt structure.

1.3.2.1 Applications for Interrupts

One of the most important tasks facing the microcomputer system

designer is the determination of those signals which will cause processor

interrupts and those operations which will take place in response to these

interrupts. A detailed discussion of these considerations is included in

Chapter 2 of the manual; however, a few examples of interrupt-driven opera-

tions will be presented here to help the designer develop an understanding

for why this technique is used extensively in microcomputer systems.

Example 1--A Fully-Decoded Keyboard

The problem of data entry is solved in many systems by a key-

board. In small systems, the interpretation of the binary code associated

with each key can be determined by the processor. However, in large data

terminals, the keyboard usually includes an encoder which generates the

unique code corresponding to each key. When a key is closed, the corre-

sponding code is placed on the output pins and a strobe signal is generated

to indicate that a key has been pressed.

The keyboard represents a perfect candidate for interrupt-

driven operation. The interrupts occur relatively infrequently and the

operation to be performed is relatively simple. The keyboard strobe line

is connected directly to an interrupt input on a peripheral interface de-

vice. Each time a strobe signal is generated, an interrupt occurs, the

processor reads the data on the peripheral port into memory, analyzes this

data and then returns to the program that was in process. If no keys are

pressed, the processor spends no time at all in servicing the keyboard.

Without the interrupts, the processor would have to read the

keyboard data into memory periodically in order to detect an active key.

This operation would be performed about every fifty to one hundred milli-

seconds. In addition to detecting an active key, the processor must make

sure that each separate activation of a key is detected once and only once.

5 and 1.3.2.6 This software is much

more complex than the simple interrupt routine. Another drawback of non-

interrupt processing is that the processor is required to spend a periodic

-20-

portion of its time on the keyboard. In many systems, this is not a prob-

lem, but in large terminals, etc., the time spent checking for keyboard

strobes could be better spent in other operations. The designer must,

therefore, ask himself if the system under development is such that the

processor can perform the keyboard strobe checking function while still

completing its other tasks.

Example 2--A Scanned Display

Although time is a major factor in determining the necessity of

interrupts, the interrupt technique can also be extremely useful when per-

forming parallel operations. A prime example of this can be found in a

system which contains a digital display and/or printer.

A digital display is usually "scanned" such that each digit is

driven for a short period of time in sequence. The entire display is

scanned at a rate which the eye cannot detect. However, it can be noted

here that the display requires scan-related attention from the processor

at fixed intervals. It is very difficult for the processor to calculate

repetitive time intervals while it is performing its normal system program

routines. The processor would much prefer to run the system program with-

out consideration for the display time intervals, only executing the display

software when it is required.

A solution to the above problem is the generation of processor

interrupts at fixed intervals using an external counter or clock. Each

time an interrupt occurs, the data for the next digit in the display is

placed on an output port. The processor then returns to the program it had

been executing.

Both of the operations described above represent solutions to

system problems. Events which happen very infrequently and events which

must be performed in paraileil with other events or in parallel with the

main system program should be seriously considered as candidates for inter-

rupts. Additional considerations are described in Chapter 2 of this manual;

however, it is important to note here that the typical system may have

several sources of interrupts, each with its own timing and each with its

own set of operations which must be performed in response to the interrupts.

-21-

1.3.2.2 Interrupt Prioritizing

After a careful analysis of the total system and a determination

of all the sources of interrupts, the designer must ask himself, "What hap-

pens if more than one interrupt source requires attention at one time?" A

priority level must be established between the various interrupt sources.

Which ones must be taken care of within a very short period? Which ones

can be put off for a while? This prioritizing and the technique for select-

ing among several concurrent interrupts is very important to the system

operation and should be established early in the system development process.

The MCS650X-based system can employ several hardware methods of

determining the highest priority active interrupt. These usually involve

using a special "priority encoder" which allows the processor to go di-

rectly to the software which services the highest priority interrupt.

After this is complete, it will go to the next higher priority and execute

that software. However, the MCS650X family provides a much less expensive

method of interrupt prioritizing. This is the "polled" interrupt. With

this technique, each time an active interrupt source is detected, the pro-

cessor executes a "polled" interrupt program that interrogates the highest

priority interrupt, then the next highest and so on until an active inter-

rupt is located. The program services that interrupt and returns to the

"polled" interrupt program and continues to interrogate the next highest

priority interrupt until all have been interrogated or clears the interrupt

disable to allow nested interrupts. The "polled" interrupt program is al-

ways executed when an interrupt occurs so that all interrupts that occur

concurrently will be serviced in order of priority level.

Several hardware techniques for prioritizing interrupts are dis-

cussed in Chapter 2 of this manual. The next section, however, describes

the system interconnect which allows use of the simple "polled" interrupt.

1.3.2.3 System Interconnect for Interrupts

In the simple "polled" interrupt technique for prioritizing inter-

rupts, the interrupt software actually determines the highest priority

active interrupt. The IRQ or NMI interrupt request signals simply cause

the processor to jump to the polling software.

For this feason, it is pussibie tv "OR" ihe various inierrupt

signals together to form the signal for the processor. Any active inter-

rupt source will then cause the processor to do the interrupt polling and

~22-

servicing operation. Provision for generation of this OR function is pro-

vided in the MCS6500 family peripheral interface devices. Since these

peripheral adapters perform many of the enabling and latching functions

necessary for proper interrupt servicing, the peripheral adaptor interrupt

output then provides the actual signal which interrupts the processor.

These interrupt outputs can be "WIRE-OR'd" by connecting them all together

and then connecting this single line to the processor. This input should

then be pulled to +5V with a resistor. Any one of the interrupt outputs

on the peripheral adaptors can then pull this interrupt low. This simple

configuration is shown in Figure 1.9.

1.3.2.4 Interrupt Servicing

Although a great deal has been said previously about the process

of establishing interrupts and determining just what happens in response to

an interrupt, it would be useful to detail the sequence which takes place

7 +h RMRAnRARAAnRN mL tam 2-2-2411 a woen tne processor. LNUiS Wiss. €Sta
a 41

Webel Chih Lib

t request input. This interrupt will be recognized after the pro-

cessor completes the instruction which it is currently executing. The next

step is to store enough of the contents of the internal processor registers

to assure that the processor can resume execution of the program which was

interrupted. In particular, the Program Counter and the Processor Status

Register are stored in a series of memory locations specified by another

internal register, the Stack Pointer. As discussed in Chapter 9 of the

Programming Manual, saving the contents of the Program Counter and Proces-

sor Status register uniquely defines, in memory, the state of the micro-

processor at the time the interrupt occurred. The processor then goes to

two fixed locations in memory to determine the address low and address high

of the interrupt software.

The operation to this point is automatic and is determined by the

internal processor logic. After the processor has properly set the address

bus, execution of the interrupt program commences. Everything which occurs

subsequently is determined by the system software.

The totai interrupt software described above will consist of a com-

plex combination of polling and interrupt servicing routines. However, unless

-23-

+5V

3Ka. RESISTOR

MCS6520 MCS650X

MCS6520 I/O PORTS

MCS6530 Y >

Ny,
PERIPHERAL
INTERFACE
DEVICES

Interrupt Wire OR’d Hardware Configuration

from Peripheral Interface Devices to Microprocessor

FIGURE 1.9

-24-

a hardware prioritizing scheme is used, the actual system interconnections

will not become any more complex than that shown in Figure 1.9.

——ee

1.3.2.5 Interrupt Request (IRQ)

As stated in Section 1.3.2, the two interrupt lines for the micro-

processor are IRQ and NMI. The requirements for proper operation of the

maskable Interrupt Request input (IRQ) are more stringent than for the

second interrupt input, NMI. This is due primarily to the fact that NMI

L 211 is edge-sensitive. With the IRQ input, the processor will be interrupted

any time the signal on IRQ is GND (< 0.4V) and the internal Interrupt Dis-

able flag is cleared. The Interrupt Disable flag (1) is a single bit in

the internal Processor Status Register. The details of this register are

described in Section 3.2 of the Programming Manual.

In the processing of interrupt request from the IRQ input, the I

flag is extremely important. This is the eiement which assures that an

interrupt will be recognized and serviced only once for each request and

only when an interrupt is desired. This is described in detail below.

Figure 1.10 details the sequence of operations which should take

piace during the servicing of an IRQ interrupt. A positive or negative

transition of the signal from the peripheral device (printer, keyboard,

etc.) is detected on the edge-sensitive inputs to the peripheral interface

device. if the interrupt is enabled within the peripheral interface de-

vice, the interrupt request output (IRQ) on this chip will go low. The

interrupt condition is latched within the peripheral interface device to

allow sufficient time for the processor to poll the interrupt sources,

assuring that the interrupt signal will not be cleared before the polling

can be completed. This latch is reset by the processor as it executes the

software associated with that interrupt. Details of this operation are

described in Section 1.4.1.2.10

The Interrupt Disable flag (I) is set automatically when the pro-

cessor recognizes an interrupt. This assures that this same interrupt will

not be recognized again. Resetting this flag can be performed manually

with an instruction in the program or automatically with a "Return from

Interrupt" instruction. It is very important that "I" not be cleared before

the interrupt input is reset. Performing the "Clear I" instruction too

early in the program can cause this same interrupt to be recognized again.

~25-

2.4V

IRQ

FROM PERIPHERAL INTERFACE

DEVICE TO MICROPROCESSOR

INTERRUPT |
FLAG (1) “9”

~™

Cr INTERRUPT REQUEST INTERRUPT FLAG (1b) IS SET HIGH AND UPON COMPLETION OF
| RECOGNIZED AFTER THE INTERRUPT REQUEST IS SERVICED

' |
} !

INTERRUPT ROUTINE IRQ
SHOULD BE RESET BEFORE
“PIS RESET TO AVOID
DOUBLE INTERRUPTING.

COMPLETION OF CURRENT BY THE MPL.
Ra ERT ETOP UNA
WAU ESPEN baka.

Sequence to Service IRQ

FIGURE 1.10

-~26-

The processor will then proceed to service this as if it were a new inter-

rupt.

1.3.2.6 Non-Maskable Interrupt (NMI)

1 wr r ~~ . 4 [er “ye PAA MN AT the processor is edge-sensitive. To cause an
4

Oo k The NMI input t

interrupt to occur, there must be a negative transition of the signal on

the NMI input. This negative transition will cause a single interrupt to

occur. After servicing the interrupt, the processor will ignore this input

until the NMI signal goes high (> +2.4V) and then back to ground.

The response to an NMI interrupt signal cannot be disabled within

the processor. After the processor completes the instruction being exe-

cuted, it will recognize the interrupt and will proceed to service the

interrupt as described in the previous section. The proper discipline to

employ in all interrupts is for the interrupt signal to be latched until

ct he processor completes servicing the interrupt. This method of operation

is assured if ail the interrupts are connected to the interrupt inputs of

the peripheral interface devices in the family.

Processing of multiple interrupts in a polled interrupt structure

requires that ail of the interrupts be polled before executing a ‘Return

from Interrupt" instruction. This is necessitated by the "WIRE-OR" tech-

nique for combining the interrupts, since no knowledge exists of which line

went to ground. If one of the interrupts is left unserviced, it will hold

the NMI signal to ground, disabling the interrupts from all other sources

since it is necessary for the NMI signal to go high (> 2.4V) and back low

again for an interrupt to occur. This is not true for the TRO input since

1 this latch is level-sensitive. Performing a "Return from Interrupt" before

all IRQ interrupt sources are serviced will simply cause another IRQ inter-

rupt to occur,

1.3.3 System Reset

One of the basic system control functions is the system RESET signal.

Whether this signal is generated automatically by external power-on circuitry

or manually from a push-button switch, the system components must obey a

fixed set of rules to assure proper system operation. This is particularly

true for the peripheral interface devices.

-27-

In the MCS650X-based systems, an assumption is made that RESET pins

on all peripheral interface devices and on the processor will be held low

during power-on until the supply voltages and the clocks have stabilized.

This procedure assures that the peripheral pins will remain in a known

state until the entire system is initialized and the processor is ready to

assume control of the output lines, i.e., is ready to run the system pro-

gram.

It should be mentioned that in the entire set of microcomputer

chips, the contents of latches, registers, etc. is totally random after

power is applied. On the peripheral output pins, random data can be

disastrous. The only way to force these lines to a known condition is to

apply the RESET signal. The designer can then make sure that the known

condition will not cause spurious operations in the peripheral devices.

The effect of RESET on the peripheral chips is discussed in the analysis

of each chip.

In the processor, the single register which must be placed

in a known state is the program counter. This is the register which se-

lects the instructions to be executed. The RESET input causes the program

counter to go to the first instruction in the system program. The specific

details of this operation are discussed in Section 1.4.1.2.11.

There is one other very important function performed by the RESET

input on the peripheral interface devices. Although the recognition of the

processor interrupt signals is automatic and does not depend on software,

the sequence of operations performed by the processor to totally service an

interrupt is determined by the program. Until the various internal regis-

ters in the processor have been initialized, the processor is not ready to

respond properly to any external interrupts. For this reason, it is im-

portant that the system RESET disable all external interrupt signals until

they are enabled by the processor. The programmer can then make sure that

the system has been properly initialized before the interrupts are enabled.

-28-

ADDRESS
BUS

Oz x c c

«w———_ REGISTER SECTION CONTROL SECTION ———®

|
L

INDEX
REGISTER

Y

INTERRUPT
LOGIC

ABI

1

AB2 << | | | | | INDEX L , |
REGISTER

* RDY AB3

ABA a = STACK
< ek POINT {K

* REGISTER | |
< (S) ABS z

= | INSTRUCTION
Zz | DECODE

ABG a es

ie le) 4]
ABT as (——— 12

"Lod | | 2

x eS
S Zz,

“ | | * = TIMING
z | CONTROL

ABO Z
= (6501)

| Z i 9) $1 (IN)

sno = | | |
2

1 | | | | 92 (IN)
(6501)

ABII
PROCESSOR
STATUS CLOCK CLOCK 9% (IN)

ABLD z REGISTER GENERATOR INPUT (6502.3.4.5)

9, oUT (6501) ABI3
9>our (6501)

| R/W

DBE
DATA BUS
BUFFER

INSTRUCTION
REGISTER

DBO

DBI

DB2

DB3 DATA

DB4 BUS

DBS

DB6

DB7

LEGEND:

{f = 8 BIT LINE

| = 1 BIT LINE

NOTE: 1. CLOCK GENERATOR IS NOT INCLUDED ON MCS6501.

2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE MCS650X PRODUCTS.

MCS650X Internal Architecture

FIGURE 1.11

-~29-

1.4 THE MICROPROCESSORS

1.4.1 The MCS6501

1.4.1.1 Introduction

The members of the MCS650X microprocessor family contain very

similar internal architectures. A block diagram of this architecture is

shown in Figure 1.11. This section begins with an analysis of this block

diagram, discussing the function of the various registers, data paths, etc.

A detailed discussion of the operation of the various pins on the chip fol-

lows.

The internal organization of the processor can be split into two

sections. In general, the instructions obtained from program memory are

executed by implementing a series of data transfers in one section of

the chip (register section). The control lines which actually cause the

data transfers to take place are generated in the other section (control

section). Instructions enter the processor on the data bus, are latched

into the instruction register, and are then decoded along with timing sig-

nals to generate the register control signals.

The timing control unit keeps track of the specific cycle being

executed. This unit is set to "TO" for each instruction fetch cycle and

is advanced at the beginning of each Phase One clock pulse. Each instruc-

tion starts in TO and goes to Tl, T2, T3, etc. for as many cycles as are

required to complete execution of the instruction. Each data transfer,

etc., which takes place in the register section is caused by decoding the

contents of both the instruction register and the timing counter.

Additional control lines which affect the execution of the instruc-

tions are derived from the Interrupt logic and from the Processor Status

register. The Interrupt logic controls the processor interface to the

interrupt inputs to assure proper timing, enabling, sequencing, etc. which

the processor recognizes and services.

The Processor Status register contains a set of latches which

serve to control certain aspects of the processor operation, to indicate

the results of processor arithmetic and logic operations, and to indicate

the status of data either generated by the processor or transferred into

the processor from outside.

Since the real work of the processor is carried on in the register

section of the chip, a detailed study will be made of this section. The

components are:

- 30-

* Data Bus Buffers

* Input Data Latch (DL)

* Program Counter (PCL, PCH)

Accumulator (A)

* Arithmetic Logic Unit (ALU)

* Stack Pointer (S)

* Index Registers (X, Y)

* Address Bus Latches (ABL, ABH)

* Processor Status Register (P)

At 1 MHz, the data which comes into the processor from the program

memory, the data memory, or from peripheral devices, appears on the data

bus during the last 100 nanoseconds of Phase Two. No attempt is made to

actually operate on the data during this short period. Instead, it is

simply transferred into the input data latch for use during the next cycle.

The data latch serves to trap the data on the data bus during each Phase

Two pulse. It can then be transferred onto one of the internal busses and

from there into one of the internal registers. For example, data being

transferred from memory into the accumulator (A) will be placed on the in-

ternal data bus and will then be transferred from the internal data bus

into the accumulator. If an arithmetic or logic operation is to be per-

formed using the data from memory and the contents of the accumulator, data

in the input data latch will be transferred onto the internal data bus as

before. From there it will be transferred into the ALU. At the same time

the contents of the accumulator will be transferred onto a bus in the reg-

ister section and from there into the second input to the ALU. The results

of the arithmetic or logic operation will be transferred back to the accumu-

lator on the next cycle by transferring first onto the bus and then into

the accumulator. All of these data transfers take place during the Phase

One clock pulse.

The program counter (PCL, PCH) provides the addresses which step

the processor through sequential instructions in the program. Each time

the processor fetches an instruction from program memory, the contents of

PCL is placed on the low order eight bits of the address bus and the con-

tents of PCH is placed on the high order eight bits. This counter is

incremented each time an instruction or data is fetched from program memory.

-3l-

The accumulator is a general purpose 8-bit register which stores

the results of most arithmetic and logic operations. In addition, the accu-

mulator usually contains one of the two data words used in these operations.

All logic and arithmetic operations take place in the ALU. This

includes incrementing and decrementing of internal registers (except PCL

and PCH). However, the ALU cannot store data for more than one cycle. If

data is placed on the inputs to the ALU at the beginning of one cycle, the

result is always gated into one of the storage registers or to external

memory during the next cycle. Each bit of the ALU has two inputs. These

inputs can be tied to various internal busses or to a logic zero; the ALU

then generates the SUM, AND, OR, etc. function using the data on the two

inputs.

The stack pointer (S) and the two index registers (X and Y) each

consist of 8 simple latches. These registers store data which is to be

used in calculating addresses in data memory. The specific operation of

each cf th LYogramiing Manual.

The address bus buffers (ABL, ABH) consist of a set of latches and

TTL compatible drivers. These latches store the addresses which are used

in accessing the peripheral devices (ROM, RAM, and 1/0).

1.4.1.2 The MCS6501 Pinouts

Figure 1.12 shows a diagram of the MCS6501 microprocessor with the

various pins designated. These pins and their use in microcomputer systems

are discussed separately below.

1.4.1.2.1 Vec, Vss--Supply Lines

The Vcc and Vss pins are the only power supply connections to

the chip. The supply voitage on pin 8 is +5.0 V DC + 5%. The absolute

limit on the Vcc input is +7.0 V DC.

1.4.1.2.2 ABOO-AB15--Address Bus

The address bus buffers on the MCS650X family of microprocessors

are push/pull type drivers capable of driving at least 130 pf and 1 stan-

dard TTL load.

The address bus will always contain known data as detailed in

Appendix A. The addressing technique involves putting an address on the

address bus which is known to be either in program sequence, on the same

-32.

aft
= <——_—— DBE

NMI ——p 6 35 N.C.

BA <= 7 34 ——_——_> R/W

vcc 8 33 DB¢

ABO 9 32 DB1

ABi id Meses0l 31 DB2

AB2 DB3
<—»>

AB3 DB4

AR4 DBS

ABS DB6

AB6 DB7

AB7 ABI5

AB8 AB14
—

AB9 AB13

AB10 AB12

ABI1 VSs

N.C. = NO CONNECTION

* VMA IS CONNECTED INTERNALLY TO Vcc. THE VMA SIGNAL IS NOT REQUIRED
ON THE MCS6501 AS ON THE MC6800, SINCE THE MCS6501 ALWAYS PUTS OUT
KNOWN ADDRESSES ON THE ADDRESS BUS.

MCS6501 Pinout Designations

FIGURE 1.12

-33-

page in program memory or at a known point in RAM. A brief study of Appen-

dix A will acquaint the designer with the detailed operation of this bus.

The various processors differ somewhat in the number of address

lines provided. In particular, the MCS6504 provides thirteen address lines

(ABOO - AB12) and the MCS6503 and MCS6505 provide twelve (ABOO - AB11). As

a result, the MCS6504 can address 8,192 bytes of memory and the MCS6503 and

MCS6505 can address 4,096 bytes. This total address space should prove to

be more than sufficient for the small, cost-sensitive systems where these

devices should find their greatest application.

The specific timing of the address bus is exactly the same for

all the processors. The address is valid 300 ns (at 1 MHz clock rate) into

the G1 clock pulse and stays stable until the next $1 pulse. This specifi-

cation will only change for processors which are specified to operate at a

higher clock rate. Figure 1.13 details the relation of address bus to

other critical signals.

Because of the reduced number of address lines on the 28-pnin

processors, it is possible to write a program which attempts to access non~

existent memory address space, i.e., the address bits 13, 14, or 15 set. to

logic "1." These upper address bits in the program will be ignored and the

program will drop into existing address space. This assumes proper memory

management when using devices of large addressing capability such that the

addressed memory space will fit within the constraints of a device with

smaller available memory addressing capability.

1.4.1.2.3 DBO-DB/7--Data Bus

The processor data bus is exactly the same for the processors

currently available and for the software-compatible processors which will

be introduced in the near future. All instructions and data transfers be-

tween the processor and memory take place on these lines. The buffers driv-

ing the data bus lines have full "three-state" capability. This is neces-

sitated by the fact that the lines are bi-directional.

Each data bus pin is connected to an input and an output buffer,

with the output buffer remaining in the "floating" condition except when

the processor is transferring data into or out of one of the support chips.

All inter-chip data transfers take place during the Phase Two clock pulse.

During Phase One the entire data bus is "floating."

-34-

READY J

R/W a WN OO

START-UP SEQUENCE

*BA IS AVAILABLE ON MCS6501 ONLY
**SYNC IS AVAILABLE ON MCS6502 ONLY

TT i‘

JUUUUUUUUUUUUUUUUUU

od oe
OANA nn nnn
JULIUS
TOI

TL
APR An.

ae

NORMAL ACTIVITY

MCS650X System Timing Diagram

FIGURE 1.13

The data bus buffer is a push/pull driver capable of driving

130 pf and 1 standard TTL load at the rated speed. At a 1 MHz clock rate,

the data on the data bus must be stable 100 ns before the end of Phase Two.

This is true for transfers in either direction. Figure 1.13 details the

relationship of the data hus to other signals

1.4.1.2.4 R/W--Read/Write

The Read/Write line allows the processor to control the direc-

tion of data transfers between the processor and the support chips. This

line is high except when the processor is writing to memory or to a peri-

pheral interface device.

All transitions on this line occur during the Phase One clock

pulse (concurrent with the address lines). This allows complete control

of the data transition which takes place during the Phase Two clock pulse.

The R/W buffer is similar to the address buffers. They are

capable of driving 130 pf and one standard TTL load at the rated speed.

Again, Figure 1.13 details the relative timing of the R/W line.

1.4.1.2.5 DBE--Data Bus Enable

On the MCS6501, a data bus enable signal is provided to allow

external enabling of the data bus. This line is connected directly to the

Phase Two input clock signal for any normally operating system and is de-

tailed in Figure 1.13.

The DBE signal affects only the data bus buffers. It does not

affect processor timing and has no effect on the address of the R/W lines.

This input is provided primarily for use in systems which use

non-family devices for either the memory or the peripheral interface func-

tions. in particuiar, it ailows the data bus to be enabied for a period

longer than the Phase Two clock pulse for systems requiring greater proces-

sor hold time on the data bus. This application is covered in greater de-

tail in Chapter 2.

1.4.1.2.6 VMA--Valid Memory Address

As mentioned above, the MCS650X family of microprocessors always

puts known addresses on the address bus and, as a result, does not require a

VMA signal. However, to remain pin-compatible with the MC6800, the VMA pin

-36-

is connected internally to the Vcc power supply. This assures operation in

systems in which VMA is part of the chip-select function. This pin is not

available on the 28-pin processors.

1.4.1.2.7 BA--Bus Available

The bus available signal is provided on the MCS6501 to signal to

a DMA controller, etc. that the processor is stopped and that the data and

address busses can be used for other than processor program execution.

This operation is similar to that of the MC6800 bus available

signal except that much less time is required to stop the MCS6501 since the

MC6800 requires completion of the current instruction before stopping. If

no write operation takes place during the cycle in which the RDY signal

goes low, the BA will go high (> 2.4V) during Phase Two of the same cycle.

In general, BA will go high during the first Phase Two pulse during which

the R/W line is high. For the current processors, the maximum time is

3-1/2 cycles.

1.4.1.2.8 RDY--Ready

line is pulled low. This line should change during the Phase One clock

pulse. This change is then recognized during the next Phase Two pulse to

enable or disable the execution of the current internal machine cycle.

This execution normally occurs during the next Phase One clock; timing is

shown in Figure 1.13. |

The primary purpose of the RDY line is to delay execution of a

program fetch cycle until data is available from memory. This has direct

application in prototype systems employing light-erasable PROMs or EAROMs.

Both of these devices have relatively slow access times and require imple-

mentation of the RDY function if the processor is to operate at full speed.

Without the RDY function a reduction in the frequency of the system clock

would be necessary.

The RDY function will not stop the processor in a cycle in which

a WRITE operation is being performed. If the RDY line goes from high to

low during a WRITE cycle the processor will execute that cycle and will

~37-

1.4.1.2.9 NMI--Non-Maskable Interrupt

The NMI input, when in the interrupted state, always interrupts

the processor after it completes the instruction currently being executed.

This interrupt is not "maskable," i.e., there is no way for the processor

to prevent recognition of the interrupt.

The NMI input responds to a negative transition. To interrupt

the processor, the NMI input must go from high (> +2.4V) to low

(< +0.4V). It can then stay low for an indefinite period without affecting

the processor operation and without another interrupt. The processor will

not detect another interrupt until this line goes high and then back to low.

The NMI signal must be low for at least two clock cycles for the interrupt

to be recognized, whereupon new program count vectors are fetched.

1.4.1.2.10 IRQ--Interrupt Request

The interrupt request (IRQ) responds in much the same manner as

NMI. However, this function can be enabled or disabled by the interrupt

inhibit bit in the processor status register. As long as the I flag (inter-

rupt inhibit flag) is a logic 1, the signal on the IRQ pin will not affect

the processor. |

The IRQ pin is not edge-sensitive. Instead, the processor will

be interrupted as long as the I flag is a logic"0" and the signal on the

TRO input is at GND. Because of this, the IRQ signal must be held low un-

til it is recognized, i.e., until the processor completes the instruction

currently being executed. If I is set when TRQ goes low, the interrupt will

not be recognized until I is cleared through software control. To assure

that the processor will not recognize the interrupt more than once, the I

flag is set automatically during the last cycle before the processor begins

executing the interrupt software, beginning with the fetch of program count.

The final requirement is that the interrupt input must be

cleared before the I flag is reset. If there is more than one active

interrupt driving these two lines (OR'’ed together), the recommended pro-

cedure is to service and clear both interrupts before clearing the I flag.

However, if the interrupts are cleared one at a time and the I flag is re-

set after each, the processor will simply recognize any interrupts still

active and will process them properly but more slowly because of the time

required to return from one interrupt before recognizing the next. If the

~38-

procedure recommended above is followed, each interrupt will be recognized

and processed only once. Figure 1.14 provides several examples of inter-

rupts, microprocessor recognition of each interrupt (IRQ and NMI), and pro-

: 1 . a aed + cessor selection of interrupts during overlapped requests.

> UUUUU FULL Il JU TLS.

INTERRUPT | ; 6 : | | |

MASK BIT Lo Lo

Examples of Interrupt Recognition by MCS650X

FIGURE 1.14

Each major event affecting the microprocessor is numbered in

the figure with the corresponding explanations below.

Event

Number System Activity

1. Processor is executing from main program and IRQ goes
to low state.

2. Upon completion of current instruction, the processor
recognizes the interrupt, stores the contents of PC
and P onto the stack and then sets I during the fetch
of the interrupt vector.

3. After servicing the interrupt, IRQ -should be reset
before resetting the interrupt mask bit to avoid
double interrupting.

4. Before the processor resumes normal main program exe-
cution the interrupt mask bit will be reset low.

5. NMI now goes low, signalling a non-maskable interrupt
request.

~39.

Event

Number System Activity

6. The NMI interrupt is recognized and serviced in the

same manner as IRQ.

7. The processor has resumed normal operation when NMI

again goes low requesting an interrupt.

8. The interrupt mask bit is set high in response to

the NMI request.

9. Here IRQ has gone low to signal an_interrupt request.

This request is ignored since the NMI interrupt is

being serviced and the interrupt mask is set.

10. The interrupt mask bit is reset after servicing the NMI

interrupt.

11. The processor is now able to recognize the IRQ signal,

which is stiil low, and does so by setting the inter-

rupt mask bit.

12. During the servicing of TRQ, NMI goes from high to low.

The processor then completes the current instruction

and abandons the IRQ interrupt to service NMI. NMI

is serviced regardless of the state of the interrupt

mask bit.

13. After completing the NMI interrupt routine, the pro-

cessor will resume execution of the IRQ routine, even

though IRQ has subsequently gone high.

1.4.1.2.11 RES--Reset

The RES line is used to initialize the microprocessor from a

power-down condition. During the power-up time this line is held low, and

writing from the microprocessor is inhibited. When the line goes high, the

microprocessor will delay 6 cycles and then fetch the new program count vec-

tors from specific locations in memory (PCL from location FFFC and PCH from

location FFFD). This is the start of the user's code. It should be assumed

that any time the reset line has been pulled low and then high, the internal

states of the machine are unknown and all registers must be re-initialized

during the restart sequence. Timing for the reset sequence is shown in

Figure 1.13.

-40-

1.4.2 The MCS6502

1.4.2.1 Product Characteristics

The MCS6502 is very similar to the MCS6501 described in detail in

the previous section. It provides a full 16-pin address bus and therefore

addresses a full 65,536 words in memory. It also has the same data bus,

R/W and RDY available on the MCS 6501.

Figure 1.15 illustrates the pin configuration of the MCS6502.

The differences between the two devices are as follows:

1. The MCS6502 has the oscillator and clock driver on-chip, thus

eliminating the need for an external high-level two-phase

clock generator.

2. The MCS6502 generates a SYNC signal instead of the bus avail-

able (BA) signal. The SYNC signal is described in detail be-

low.

3. Pin 5, corresponding to the MC6800 VMA signal, is not connec-

ted.

4. The internal data bus enable function is connected directly to

the phase two clock on the chip. Therefore pin 36 on the

MCS6502 is not connected.

1.4.2.2 Device Timing--Requirements and Generation

The MCS6501, in maintaining total bus compatibility with the

MC6800 product family, requires a 5-volt two-phase clock. The MCS6502,

however, can be used with an externally generated time base consisting of

either a TTL level single-phase clock, crystal oscillator or RC network.

Figures 1.16 and 1.17 show the configuration for setting the fre-

quency of oscillations with a crystal or with an RC network.

Figure 1.16 displays the crystal mode of operation in which the

frequency of oscillation is set by the crystal operating in conjunction

with the RC network. Figure 1.17 displays the same interconnects as in the

crystal mode of time base generation, with the crystal removed from the

-41-

Vss «<q____ RES

RDY @> (OUT)

§ 1 (OUT) <¢——__ S.0.

IRQ %o (IN)

N.C N.C.

NMI N.C.

SYNC R/W

vcc DB¢

ABO DBI

ABI MCS6502 DB?

AB2 DB3

AB3 DB4

AB4 DBS

ABS DB6

AB6 DB7

AB7 ABI5

AB8 AB14

AB9 AB13

AB10 AB12

AB11 Vss

N.C. = NO CONNECTION

MCS6502 Pinout Designation

FIGURE 1.15

~42-

39 SYSTEM @ 2

PIN.
37, Oo CIN)
39 @2 (OUT)

MCS6502 Parallel Mode Crystal Controlled Oscillator
FIGURE 1.16a

SYSTEM 0,

PIN
37 M5 (IN)

Ly 39 > (OUT)
or—

CRYSTAL

MCS6502 Series Mode Crystal Controlled Oscillator
FIGURE 1.166

MCS6502 Time Base Generation - Crystal Controlled
FIGURE 1.16

> SYSTEM @ 7

PIN
37 Qo CIN)
39 2 (OUT)

MCS6502 Time Base Generator — RC Network
FIGURE 1.17

-43-

circuit. Values of the feedback resistor, Rp» and feedback capacitor, Ca

will be different for the crystal mode versus the RC mode. While the de-

tail specifications for values of Ry and Cy are found in the data sheet for

the MCS6502, clock timing can be generated by use of combinations of Re in

the range of 0 to 500K ohms and CE in the range of 2 to 12 pf. The reader

is teferred to the MCS6502 data sheet for a detailed description of the

application of RC networks and crystal oscillators for generation of the

time base in these modes of operation.

The MCS6500 bus discipline described in Section 1.3.1 is appli-

cable wherever the oscillator is located. For data transfers to be properly

carried out between the processor and the various support chips in the sys-

tems, the timing of the clocks controlling the internal processor opera-—

tions must be very close to that of the phase two clock out of pin 39 of

the processor with no more than two TTL delays for clock buffering. It is

important in systems which drive the clock generators with a TIL square

wave that this input waveform not be used to control the peripheral chips

unless care is taken to assure proper timing of the phase two clock being

used in these support chips.

1.4.2.3 SYNC Signal

In the MCS6502, a SYNC signal is provided to identify those cycles

in which the processor is doing an OP CODE fetch. The SYNC line goes high

during phase one of an OP CODE fetch and stays high for the remainder of

that cycle. If the RDY line is pulled low during the phase one clock pulse

in which the SYNC line went high, the processor will stop in its current

state. It remains in that state until the RDY line goes high. In this

manner, the SYNU signal can be used to control RDY to cause single-instruc—

tion execution. This application is discussed in detail in Chapter 2.

Figure 1.18 contains a timing diagram for this signal.

1.4.2.4 S.0.--Set Overflow

This pin sets the overflow flag on a negative transition from

TIL one to TTL zero. This is designed to work with a future I/0 part and

should not be used in normal applications unless the user has programmed

for the fact the arithmetic operations also affect the overflow flag.

-44-

02 TUL
—

R/W F |

SYNC] | ‘ | | |

—

. During a microprocessor write cycle, R/W signal low, the
SYNC pulse does not occur.

. The R/W signal goes high to signal the beginning of a
microprocessor read cycle.

\t the beginning of the read cycle a SYNC pulse will be
be generated. This pulse will last for one cycle time. The
SYNC pulse indicates that the microprocessor is reading an
OP CODE from the memory field. In this case the SYNC pulse is
high for one cycle as the processor reads the OP CODE.

. The processor outputs another SYNC pulse indicating it has
completed the previous instruction and is fetching another
OP CODE. In this case three more cycles are needed to complete
this instruction before the next SYNC pulse is generated. The
SYNC pulse is aperiodic in that its generation is a function of
the program and the resultant lengths of the instructions and
addressing modes.

MCS6502 SYNC Signal

FIGURE 1.18

-45-

“QPp-

The overation of each function is exactly the same as on the MCS6502.

Features MCS6503 MCS6504 MCS6505

ry ee aepmamemmemnenemmnsnnanensanpsinmmasmsmmmassanes

Addressing 4096 Bytes 8192 Bytes 4096 Bytes

Capability (ABOO - AB11) (ABOO - AB12) (ABOO - AB11)

Interrupt

Request

Capability

Single Phase Single Phase Single Phase

TTL Level @9(IN), | TTL Level @ 9 (IN), | TTL Level 0) (IN),

or Crystal or RC or Crvstal or RC or Crystal or RC

IRQ IRQ

Timing

Signals
Required

Other Control RES, R/W RES, R/W
Signals

Functional Features of MCS6503, MCS6504, MCS6505

FIGURE 1.19

Figure 1.20 illustrates the pin designation for the three proces-

sors, indicating the tradeoffs that exist between control signais and ad-
dressing capability due to pinout constraints. Like the MCS6502, the 28-

pin microprocessors also have the on-the~-chip oscillator and clock drivers.

Figures 1.21 and 1.22 display the circuitry necessary to generate the time

base in the crystal mode and RC network mode respectively. Specific de-

tails on the values of feedback resistance, Re and feedback capacitance,

Ch» can be found in the appropriate data sheet.

-47.~

“SPr-

1

2

3

4

5

6

7

8

9

MCS6503

92 (OUT)

@o (IN)

R/W

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

ABI1

ABI10

AB9

92 (OUT)

%o CIN)

R/W

DBO

DBI

DB2

DB3

DB4

DBS

DB6

1)B7

ABI2

ABII1

AB10

1

2

3

4

5

6

7

8

9

AB7

AB8

ABS

MCS6504

MCS6503, MCS6504, MCS6505 Pinout Designations

FIGURE 1.20

AB4

ABS

AB6

AB7

AB8

1

2

3

4

5

6

7

8

9

MCS6505

§2 (OUT)

#0 (IN)

R/W

DBO

DBI

DB2

DB3

DB4

DBS

DB6

DB7

ABI1

AB10

AB9

7404
28 SYSTEM 0,

Cr
7 “T- +t wi—

PIN
27) Bo GN)

| Pe a5 CRYSTAL 28 2 (oUT)

MCS 6503, 4,5 Parallel Mode C Crysi al

Controlled Oscillarne

SYSTEM 9 7

PIN
27) Qo CIN)

28 9 (couT) | K | 2 OUT)

MCS6503,4,5 Series Mode Crystal
Controlled Oscillator

MCS6503, MCS6504, MCS6505 Time Base Generation
Crystal Controlled
FIGURE 1.21

SYSTEM @ >

“27 Qo (IN)
9 (OUT)

MCS6503. MCS6504, MCS6505 Time Base Generation
RC Network

FIGURE 1.22

-49-

1.5 PERIPHERAL INTERFACE DEVICE — MCS6520

1.5.1 Introduction

The MCS6520 is a direct pin for pin replacement for the Motorola

MC6820 Peripheral Interface Adapter, the "PIA". As such, it meets all of

the "PIA" electrical specifications and is totally hardware compatible

with the MC6820.

The MCS6520 is an I/O device which acts as an interface between

the microprocessor and peripherals such as printers, displays, keyboards,

etc. The prime function of the MCS6520 is to respond to stimulus from

each of the two worlds it is serving. On the one side, the MCS6520 is

interfacing with peripherals via two eight-bit bi-directional peripheral

data ports. On the other side, the device interfaces with the micropro-

cessor through an eight-bit data bus; this is the same data bus discussed

at length in Section 1.3.1. It is, therefore, simplest to view the basic

function of the MCS6520 as in the block diagram of Figure 1.23.

CONTROL

8 BIT 8 BIT
DATA BUS DATA PORT PERIPHERAL

MICROPROCESSORS DEVICES _
MCS650X MCS6520 PRINTERS,

DISPLAYS, ETC.
8 BIT |

CONTROL DATA PORT

CONTROL

Racin MCOCRSIN Intortaco Dinaram
AP MDIEU AURIS ae a vow guwew — WH ey ww

FIGURE 1.23

-50-

in addition to the lines described above, the MCS6520 provides four

interrupt input/peripheral control lines and the logic necessary for

simple, effective control of peripheral interrupts. No external logic

is required for interfacing the MCS650X microprocessor to most peripheral

devices.

The functional configuration of the MCS6520 is programmed by the

microprocessor during systems initialization. Each of the peripheral

data lines is programmed to act as an input or output and each of the four

control/interrupt lines may be programmed for one of four possible control

modes. This allows a high degree of flexibility in the overall operation

of the interface.

Some of the more importan

* Compatibility with the MCS650X microprocessors.

A Eight-bit bi-directional data bus for communication with
the microprocessor.

* Two eight-bit bi-directional ports for interface to
peripherals.

* Two programmable control registers.

* Two programmable Data Direction Registers.

* Four individually controlled interrupt input lines -
two usable as peripheral control outputs.

* Handshake control logic for input and output peripheral
operation.

+ High impedance three-state and direct transistor drive
peripheral lines.

* Program controlled interrupt and interrupt mask capability.

1.5.2 Organization of the MCS6520

Figure 1.25 contains a block diagram of the MCS6520 showing the

internal registers and data paths and the various inputs and outputs on

the device. This section contains a general description of the internal

organization of the device along with a discussion of how the various

registers affect one another. The following sections discuss the details

-51-

Vss
<——— CAI

AAg
<q CA2

PAI
= IROA

PA2
IROB

PA3
RSG

PA4
‘ RSI

PAS
' RES

PA6
De

PA7
DI

PBS MCS6520 D2

PBI
m2

<>
PB2

D4

Pas a
PB4

Dé

PBS
D7

PBO
~<4-—_—_——— ENABLE

PB?
~<=—_—_ cs2

CBI
< oT

cB2
=< Cs1

vcc
<_—— Rw

MCS6520 Pinout Designations Peripheral Interface Adaptor

FIGURE 1.24

-52-

IRQA INTERRUPT STATUS CAI
CONTROL A

CA2

CONTROL

RE So AT" | paTA DIRECTION
(CRA) REGISTER A

DO (DDRA)
D1 |
D2 D3 DATA BUS
D4 BUFFERS OUTPUT BUS PAG

<= See |_| Ps T D6 PERIPHERAL REGISTER A [——-—
D7 INTERFACE PA3

(ORA) BUFFER PA4
: A ape PAS

t-te PAG
| | | PAT

DATA INPUT
REGISTER

(DIR) PBO
PBI

. PERIPHERAL PR?
OUTPUT PERIPHERAL Be

REGISTER B INTERFACE PB3
(ORB) BUFFER PB4

PBS
| PB6

PB7

CHIP

SELECT INPUT BUS

AND == DATA DIRECTION

RW R CONTROL REGISTER B

CONTROL REGISTER B (DDRB)

(CRB)

_
INTERRUPT STATUS CBi

RB 29 i@i—i A CONTROL B cB?

MCS6520 Internal Architecture

FIGURE 1.25

~53-

of the inputs and outputs on the chip, along with a detailed discussion of

the operation of each register. The final section discusses the MCS6520

from an operational viewpoint, describing the interaction of the register

bits, input/output lines, etc.

The MCS6520 is organized into two independent sections referred to

as the "A Side" and the "B Side." Each section consists of a Control Regis-

ter (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA,

ORB), Interrupt Status Control and the buffer necessary to drive the Periph-

eral Interface busses.

1.5.2.1 Data Input Register

When the microprocessor writes data into the MCS6520, the data

which appears on the data bus during the Phase Two clock pulse is latched

into the Data Input Register. It is then transferred into one of six in-

ternal registers of the MCS6520 after the trailing edge of Phase Two. This

assures that the data on the peripheral output lines will not "olitch,"

i.e., the output lines will make smooth transitions trom high to iow or from

low to high and the voltage will remain stable except when it is going to

the opposite polarity.

1.5.2.2 Control Registers (CRA and CRB)

Figure 1.29 illustrates the bit designation and functions in the

Control Registers. The Control Registers allow the microprocessor to con-

trol the operation of the interrupt lines (CA1, CA2, CBl1, CB2), and periph-

eral control lines (CA2, CB2). A single bit in each register controls the

addressing of the Data Direction Registers (DDRA, DDRB) and the Output Reg-

isters (ORA, ORB) discussed below. In addition, two bits (bit 6 and 7) are

provided in each controi register to indicate the status of the interrupt

input lines (CA1, CA2, CBl, CB2). These interrupt status bits (TROA, TROB)

are normally interrogated by the microprocessor during the interrupt serv-

ice program to determine the source of an active interrupt. These are the

interrupt lines which drive the interrupt input (IRQ, NMI) of the micro-

processor. The other bits in CRA and CRB are described in the discussion

of the interface to the peripheral device (Section 1.5.4).

The various bits in the control registers will be accessed many

times during a program to allow the processor to enable or disable inter-

rupts, change operating modes, etc. as required by the peripheral device

being controlled.

54.

1.5.2.3 Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each

(Tt line in the 8-bit Peripheral I/0 port to act as either an input or an out—

put. Each bit in DDRA controls the corresponding line in the Peripheral A

port and each bit in DDRB controls the corresponding line in the Peripheral

B port. Placing a "0" in the Data Direction Register causes the correspond-

ing Peripheral I/0 line to act as an input. A "1" causes it to act as an

output.

The Data Direction Registers are normally programmed only during

the system initialization routine which is performed in response to a Reset

signal. However, the contents of these registers can be altered during

system operation. This allows very convenient control of some peripheral

devices such as keyboards.

1.5.2.4 Peripheral Output Registers (ORA, ORB)

The Peripheral Output R gisters store the output d

pears on the Peripheral 1/0 port. Writing an "0" into a bit in ORA causes

the corresponding line on the Peripheral A port to go low « 0.4V) if that

line is programmed to act as an output. A "1" causes the corresponding

output to go high. The lines of the Peripheral B port are controlled by

ORB in the same manner.

Addressing of these registers is discussed in Section 1.5.3.4.

1.5.2.5 Interrupt Status Control

The four interrupt/peripheral control lines (CAl, CA2, CBl, CB2)

are controlled by the Interrupt Status Control (A, B). This logic inter-

prets the contents of the corresponding Control Register, detects active

transitions on the interrupt inputs and performs those operations necessary

to assure proper operation of these four peripheral interface lines. The

operation of these lines is described in detail in Section 1.5.4. 2.

1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB)

The Buffers which drive the peripheral I/0 ports and the data bus

provide the current and voltage drive necessary to assure proper system

operation and to meet the device specifications.

-55~-

1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors

The MCS6520 interfaces to the microprocessor with an 8-bit bi-direc-

tional data bus, 3 chip-select lines, 2 register-select lines, 2 interrupt

request lines, read/write line, enable line and reset line.

1.5.3.1 Data Bus (DO-D7)

The 8-bit, bi-directional data bus allows the transfer of data be-

tween the microprocessor and the MCS6520. The data bus output drivers are

3-state devices that remain in the high impedance state except when the

microprocessor reads data from the peripheral adapter. This data bus is

the same as discussed in Section 1.3.1, "Bus Structure."

1.5.3.2 Enable (E)

The Enable input is the only microprocessor interface timing input

on the peripheral interface device. All data transfers into and out of the

MCS6520 are controlled by this signal. In mormal operation, this input

should be connected to the phase two clock signal. In the case of the

MCS6501, this is the $2 clock generated external to the microprocessor

chip. For on-chip oscillator products (MCS6502, MCS6503, MCS6504 and

MCS6505), the enable pulse becomes $2(OUT). |

1.5.3.3 Read/Write (R/W)

This signal is generated by the microprocessor to control the di-

rection of data transfers on the data bus. A low (< 0.4V) on this line

enables the input buffers (microprocessor Write) and data is transferred

from the microprocessor to the MCS6520 under control of Enable input if the

device has been chip-selected. A high on the R/W line allows the MCS6520

to transfer data to the data bus buffers. The data bus buffers are enabled
when the proper chip-select and Enable Signals are present. Figure 1.26

illustrates the Read/Write timing.

1.5.3.4 Chip Select Lines (CSI, CS2, CS3)

These three inputs allow the microprocessor to select the proper

peripheral interface device. CS1 and CS2 must be high and CS3 must be low

for selection of the device. Data transfers are then performed under con-

trol of the Enable and R/W signals. These lines are normally connected to

the address iines on the microprocessor, either directly or through address

decoders.

-56-

180
2.4V

ENABLE
0.4V |

| > 300
— 2.4V

0.4V

| 0.4V

ADDRESS

2.4V

PERIPHERAL
DATA (A OR B) 0.4V

700

Microprocessor Interface Timing - Read

FIGURE 1.26a

ft 470 7

2.4V

ENABLE 0.4V

180

2.4V

' 0.4V

130
2.4V

READ/WRITE 0.4V

20

2.4V cara Ct }—
0.4V

100
__ 2.4V

PERIPHERAL > C|

DATA (A OR B) 0.4V

*NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Microprocessor Interface Timing - Write

FIGURE 1.26b

~57-

As described in Section 1.5.5.2, a single bit in each Control Reg-

ister (CRA and CRB) controls access to the Data Direction Register or the

Peripheral interface. If bit 2 in the Control Register is a "1," a Periph-

eral Output register (ORA, ORB) is selected, and if bit 2 is a "0," the

Data Direction Register is selected. Internal registers are selected by

the Register Select lines (RS@, RS1) and the Data Direction Register Access

Control bit as follows:

Data Direction

Register Access

Control Bit

RSL RS@ CRA-2 CRB-2 Register Selected

¢ d 1 - Peripheral Interface A (See

Section 1.5.3.5.1)

d) d - Data Direction Register A

- - Control Register A

g _ 1 Peripheral Interface B (See

Section 1.5.3.5.2)

1) - d Data Direction Register B

1 1 - ~ Control Register B

If the programmer wishes to write the data into DDRA, ORA, DDRB,

or ORB, he must first set bit 2 in the proper Control Register. The de-

sired register can then be accessed with the address determined by the

address interconnect technique used. (See Chapter 2, Section 2.3.1 for a

discussion of addressing in MCS650X systems.)

1.5.3.5 Register Select Lines (RSO), (RS1)

These two register select lines are used to select the various reg-

isters inside the MCS6520. These input lines are used in conjunction with

internal control registers to select a particular register that is to be

accessed by the microprocessor. These lines are normally connected to

microprocessor address output lines. These lines operate in conjunction

with the chip-select inputs to allow the microprocessor to address a single

8-bit register within the microprocessor address space. This register may

be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/0 port.

The processor can write directly into the Control Registers (CRA,

CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output

Registers (ORA, ORB). In addition, the processor can directly read the

~58-

contents of the Control Registers and the Data Direction Registers. Access-—

ing the Peripheral Output Register for the purpose of reading data back into

the processor operates differently on the ORA and the ORB registers and é - — an -

therefore are discussed separately below.

1.5.3.5.1 Reading the Peripheral A 1/0 Port

The Peripheral A 1/0 port consists of 8 lines which can be pro-

grammed to act as inputs or outputs. When programmed to act as outputs,

each line reflects the contents of the corresponding bit in the Peripheral

Output Register. When programmed to act as an input, these lines will go

high or low depending on the input data. The Peripheral Output Register

(ORA) has no effect on those lines programmed to act as inputs. The 8

lines of the Peripheral A I/0 port therefore contain either input or output

data depending on whether the line is programmed to act as an input or an

output. Figure 1.2/a illustrates the interface timing.

orming a Read operation with RSi = 0, RSO = 6 and the Data

Direction Register Access Control bit (CRA-2) = 1, directly transfers the

data on the Peripheral A I/0 lines into the processor (via the data bus).

he input and output data. The processor must be

programmed to recognize and interpret only those bits which are important

to the particular peripheral operation being performed.

Since the processor always reads the Peripheral A 1/0 port pins

instead of the actual Peripheral Output Register (ORA), it is possible for

the data read into the processor to differ from the contents of the Periph-

eral Output Register for an output line. This is true when the I/O pin is

not allowed to go to a full +2.4V DC when the Peripheral Output register

contains a logic 1. In this case, the processor will read a @ from the

Peripheral A pin, even though the corresponding bit in the Peripheral Out-

put register is al.

1.5.3.5.2 Reading the Peripheral B I/0 Port

Reading the Peripheral B I/0 port yields a combination of input

and output data in a manner similar to the Peripheral A port. However,

data is read directly from the Peripheral B Output Register (ORB) for those

lines programmed to act as outputs. It is therefore possible to load down

the Peripheral B Output lines without causing incorrect data to be trans-—

ferred back into the processor on a Read operation. Figure 1.27b illus-

trates the timing.

-59-

ENABLE

ADDRESS

READ/WRITE

DATA BUS

PERIPHERAL
DATA

CA2

CAI

CA2

_/ NU, SN
180

i fp} __ qo ff

+ {Th
> Ga

1.0yus

(ACS = AC3 = 1, AC4 = 0)
PULSE OUTPUT MODE

1.0us
ape erie Pi PsP SN SESS eS: tS SS ene

2.0us

(ACS = 1, AC3 = AC4 = 0)
HANDSHAKE MODE

NOTE: ALL TIMES SPECIFIED ARE IIN nSEC FOR 1MHZ OPERATION.

Peripheral A Interface Timing

FIGURE 1.27a

-19-

ENABLE

180 |

. |

ADDRESS

130

R/W

100

DATA BUS (|)

20

PERIPHERAL DATA AND » (
CB2 (NORMAL OUTPUT MODE)

1.0us

CB2 (PC5 = BC3 = 1, BC4 = 9)
(PULSE OUTPUT MODE)

a hg A cA es SS

CBl

CB2 (BC5 = 1, BC3 = BC4 = 9)
(HANDSHAKE MODE)

NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Peripheral B Interface Timing

FIGURE 1.27b

1.0us

|
+5V | +5 +5

| |

PASSIVE | |
PULL-UP | |

RESISTOR
| OUTPUT |

| TO
| CHIP

fe

OUTPUT MODE INPUT MODE

— RESISTOR PULL-UP
REMAINS IN CIRCUIT

Peripheral I/O Port A Buffer

FIGURE 1.28A

oe LL psa aT

+5V +5V
|

|
|

|

|

| | | QUTPUT |
| TO
: CHIP

|
|

MCS6520 MCS6520

~~ _4 | Po
OUTPUT MODE INPUT MODE

— NO PULL-UP
IN CHIP

Peripheral I/O Port B Buffer

FIGURE 1.28B

-62-

The details of the Peripheral A and Peripheral B ports will be

discussed in the next section under the discussion of the interface between

the MCS6520 and the Peripheral Devices.

1.5.3.6 Reset (RES)

The active low Reset line resets the contents of all MCS6520 reg-

isters to a logic zero. This line can be used as a power-on reset or as a

master reset during system operation.

1.5.3.7 Interrupt Request Line (IRQA, IRQB)

The active low Interrupt Request lines (IRQA and TIRQB) act to

interrupt the microprocessor either directly or through external interrupt

priority circuitry. These lines are "open source" (no load device on the

chip) and are capable of sinking 1.6 milliamps from an external source.

This permits all interrupt request lines to be tied together in a "wired-OR"

ifigu 1. The "A" and "RB" in the titles of these lines correspond to

the "A" peripheral port and the "B" peripheral port. Hence each interrupt

request line services one peripheral data port.

Each Interrupt Request line has two interrupt flag bits which can

cause the Interrupt Request line to go low. These flags are bits 6 and 7

in the two Control Registers. These flags act as the link between the

peripheral interrupt signals and the microprocessor interrupt inputs. Each

flag has a corresponding interrupt disable bit which allows the processor

to enable or disable the interrupt from each of the four interrupt inputs

(CA1l, CA2, CB1, CB2).

The four interrupt flags are set by active transitions of the sig-

nal on the interrupt input (CAl, CA2, CB1, CB2). Controlling this active

transition is discussed in the next section under the discussion of the

interface between the MCS6520 and the peripheral device.

1.5.3.7.1 Control of IRQA

Control Register A bit 7 is always set by an active transition

of the CAl interrupt input signal. Interrupting from this flag can be dis-

abled by setting bit 0 in the Control Register A (CRA) to a logic 0. Like-

wise, Control Register A bit 6 can be set by an active transition of the

CA2 interrupt input signal. Interrupting from this flag can be disabled by

setting bit 3 in the Control Register to a logic Q.

-63-

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Out-

put Register A" operation. This is defined as an operation in which the

proper chip-select and register-select signals are provided to allow the

processor to read the Peripheral A I/O port.

1.5.3.7.2 Control of IRQB

Control of TROB is performed in exactly the same manner as that

described above for TROA. Bit 7 in CRB is set by an active transition on

CB1; interrupting from this flag is controlled by CRB bit @. Likewise, bit

6 in CRB is set by an active transition on CB2; interrupting from this flag

is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B

Output Register" operation.

SUMMARY :

IRQA goes low when CRA-7 = 1 and CRA-O = i or when CRA-6 = 1 and

CRA-3 = 1.

TRQB goes low when CRB-7 = 1 and CRB-O = 1 or when CRB-6 = I and

CRB-3 = l.

The use of these interrupt flags and interrupt disable bits is

discussed in more detail in Section 1.5.4.

It should be stressed at this point that the flags act as the

link between the peripheral interrupt signals and the processor interrupt

inputs. The interrupt disable bits allow the processor to control the

interrupt function.

1.5.4 Interface Between MCS6520 and Peripheral Devices

The MCS6520 provides 2 8-bit bi-directional ports and 4 interrupt/

control lines for interfacing to peripheral devices. These ports and the

associated interrupt/control lines are referred to as the "A" side and the

and the "B'"' side. Each side has its own unique characteristics and will

therefore be discussed separately below.

1.5.4.1 Peripheral I/0 Ports

The Peripheral A and Peripheral B I/0 ports allow the microproces-

sor to interface to the input lines on the peripheral device by loading

data into the Peripheral Output Register. They also allow the processor to

interface with the peripheral device output lines by reading the data on

-64-

the Peripheral Port input lines directly onto the data bus and into the

internal registers of the processor.

1.5.1.1.1 Peripheral A I/0 Port (PAQ@-PA7)

As discussed in Section 1.5.2.3. each of the Peripheral I/O lines

can be programmed to act as an input or an output. This is accomplished by

in the corresponding bit i aa (t he Data Direction Register for

those lines which are to act as outputs. A "0" in a bit of the Data Direc-

tion Register causes the corresponding Peripheral I/0 lines to act as an

input.

The buffers which drive the Peripheral A I/0 lines contain

"passive" pull-ups as shown in Figure 1.28a. These pull-up devices are

resistive in nature and therefore allow the output voltage to go to Vdd for

a logic 1. The switches can sink a full 1.6 ma, making these buffers cap-

able of driving one standard TIL load.

In the input mode, the pull-up devices shown in Figure 1.28a are

still connected to the I/0 pin and still supply current to this pin. For

this reason, these lines represent one standard TTL load in the input mode.

1.5.4.1.2 Peripheral B 1/0 Port (PBO-PB7)

The Peripheral B I/0 port duplicates many of the functions of

the Peripheral A port. The process of programming these lines to act as an

input or an output has been discussed previously. Likewise, the effect of

reading or writing this port has been discussed. However, there are sev-

eral characteristics of the buffers driving these lines which affect their

use in peripheral interfacing. These will be discussed below.

The Peripheral B I/O port buffers are push-pull devices as shown

in Figure 1.28b. The pull-up devices are switched "OFF" in the "0" state

and "ON" for a logic 1. Since these pull-ups are active devices, the logic

"1" voltage is not guaranteed to go higher than +2.4V. They are TTL com-

patible but are not CMOS compatible.

However, the active pull-up devices can sink up to 1 ma at 1.5V.

This current drive capability is provided to allow direct connection to

Darlington transistor switches. This allows very simple control of relays,

lamps, etc.

Because these outputs are designed to drive transistors directly,

the output data is read directly from the Peripheral Output Register for

those lines programmed to act as inputs.

-65-

The final characteristic which is a function of the Peripheral B

push-pull buffers is the high-impedance input state. When the Peripheral B

I/0 lines are programmed to act as inputs, the output buffer enters the high

impedance state. These inputs will then have an impedance of greater than

1 megohnm.

1.5.4.2 Interrupt Input/Peripheral Control Lines (CAl, CA2, CB1l, CB2)

The four interrupt input/peripheral control lines provide a number

of special peripheral control functions. These lines greatly enhance the

power of the two general purpose interface ports (PA@-PA7, PBO@-PB7).

1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CAl, CA2)

CAl is an interrupt input only. An active transition of the

signal on this input will set bit 7 of the Control Register A to a logic l.

The active transition can be programmed by the microprocessor by setting a

"9" in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set

on a negative transition of the CAl signal or a "1" if it is to he set on ~—g& — (p

positive transition. Note: A negative transition is defined as a trans-

ition from a high (> 2.4V) to a low (< 0.4V), and a positive transition is

defined as a transition from a low to a high voltage.

Setting the interrupt flag will interrupt the processor through

IRQA if bit @ of CRA is a l as described previously.

CA2 can act as a totally independent interrupt input or as a

peripheral control output. As an input (CRA, bit 5 = @) it acts to set the

interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selec-

ted by bit 4 of CRA.

These control register bits and interrupt inputs serve the same

basic function as that described above for CAl. The input signal sets the

interrupt flag which serves as the link between the peripheral device and

the processor interrupt structure. The interrupt disable bit allows the

processor to exercise control over the system interrupts.

In the Output mode (CRA, bit 5 = 1), CA2 can operate indepen-

dently to generate a simple pulse each time the microprocessor reads the

data on the Peripheral A I/0 port. This mode is selected by setting CRA,

bit 4 to a "6" and CRA, bit 3 itu a "i." This puise output can be used io

control the counters, shift registers, etc. which make sequential data

available on the Peripheral input lines.

-66-

A second output mode allows CA2 to be used in conjunction with

CAl to “handshake” between the processor and the peripheral device. On the

A side, this technique allows positive control of data transfers from the

peripheral device into the microprocessor. The CAL input signais the pro-

cessor that data is available by interrupting the processor. The processor

reads the data and sets CA2 low. This signals the peripheral device that

it can make new data available. This technique is discussed in detail in

Chapter 2.

The final output mode can be selected by setting bit 4 of CRA to

al. In this mode, CA2 is a simple peripheral control output which can be

set high or low by setting bit 3 of CRA to al ora @ respectively.

The operation of CAl and CA2 is summarized in the next section.

1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2)

CBl operates as an interrupt input only in the same manner as

CAl. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB.

Likewise, the CB2 input mode operates exactly the same as the CA2 input

modes. The CB2 output modes, CRB, bit 5 = 1, differ somewhat from those of

CA2. The pulse output occurs when the processor writes data into the Periph-

eral B Output Register. Also, the “handshaking" operates on data transfers

from the processor into the peripheral device.

The operation of CB1 and CB2 is summarized in the next section.

A more detailed discussion of handshaking on the Peripheral B I/0 port is

contained in Chapter 2 of this manual.

1.5.5 Summary of MCS6520 Operation

1.5.5.1 Control Register Operation

a ee ee Se ee ee
IRQA1

2

TRQA2 CA2 Control DDRA CAl Control
Eee, Access Ce,

IRQB1 IRQB2 CB2 Control DDRB CB2 Control
, Access J,

CRA

Control Register Bit Designations

FIGURE 1.29

-67-

CRA (CRB)
Active Transition IRQA (IRQB)

Bit 1 Bit 0 of Input Signal* Interrupt Outputs

negative Disable-~-remain high

Enabled--goes low when bit 7
in CRA (CRB) is set by active

transition of signal on CAI

(CB1)

negative

positive Disable--remain high

positive Enable--as explained above

*Note 1: Bit 7 of CRA (CRB) will be set to a logic 1 by an active

transition of the CAl (CB1) signal. This is independent
he state of Bit @ in CRA (CRB). afr +

UL eric SoOv1aree vai wv

Control of Interrupt Inputs CA1, CB1

FIGURE 1.30

Active Transition IRQA CIRQB)
of Input Signal* Interrupt Output

negative Disable--remains high

Enabled--goes low when bit 6
in CRA (CRB) is set by active

transition ef signal on CA2
(CB2)

negative

positive Disable--remains high

positive Enable--as explained above

Bit 6 of CRA (CRB) will be set to a logic 1 by an active
transition of the CA2 (CB2) signal. This is independent

of the state of Bit 3 in CRA (CRB).

Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = “‘0”’)

FIGURE 1.3la

-68-

CRA

Bit 5 Bit 4 Bit 3 Mode Description

CA2 is set high on an active

transition of the CAl interrupt

input signal and set low by a
i 0 0 "Handshake" microprocessor "Read A Data"

| operation. This allows posi- |

tive control of data transfers

from the peripheral device to
the microprocessor.

CA2 goes low for one cycle

after a "Read A Data" opera-
1 0 1 Pulse Output tion. This pulse can be used

to signal the peripheral de-

vice that data was taken.

1 1 0 | Manual Output CA2 set low

Manual Output CA2 set high

Control of CA2 Output Modes

FIGURE 1.31b

CRB

Bit 5 Bit 4 Bit 3 Description

CB2 is set low on microproces-

sor "Write B Data" operation
and is set high by an active

"Handshake" transition of the CBl interrupt
on Write input signal. This allows posi-

tive control of data transfers

from the microprocessor to the

peripheral device.

CB2 goes low for one cycle after

a microprocessor “Write B Data”
1 0 1 Pulse Output operation. This can be used to

signal the peripheral device
that data is available.

1 1 0 Manual Output CB2 set low

Manual Output CB2 set high

Control of CB2 Output Modes

FIGURE 1.31c

-69-

1.5.5.2 MCS6520 Operation in MC6500 Systems

A brief review of the overall operation of the MCS6520 should

serve to tie together many of the details discussed previously.

During the system initialization routine which is executed in

response to the processor RESET signal, the microprocessor will write

a pattern of 1's and @'s into the Data Direction Registers. This will

determine those lines which are to act as inputs and those which are to

act as outputs.

This pattern will usually be fixed for the system operation.

Therefore, the next step would be to set the various operating modes,

active transitions, etc. which are controlled by the Control Registers.

At the same time the Data Direction Register Access Control Bit can be

set to a 1 to allow the processor to control the Peripheral Ports during

system operation.

The interrupts will normally remain disabled until the entire

system is initialized. At this time, the interrupts are enabled and full

system operation begins.

During system operation, the microprocessor will interrogate the

switches, sensors, etc. in the peripheral device by reading the data on the

Peripheral Input lines. Binary or decimal data may be transferred into the

microprocessor in the same way. At the same time the various lights, motors,

solenoids, etc. on the peripheral device are controlled by writing data into

the appropriate bits of the Peripheral Output Registers. The entire sequence

of operations is determined by the programmer to control a particular periph-

eral device in a defined manner. The various registers, gates, etc. in the

Interface Device act primarily as a link between the internal processor oper-

ations and the various inputs and outputs on the peripheral devices being

controlled.

-70-

1.6 PERIPHERAL INTERFACE/MEMORY DEVICE — MCS6530
1.6.1 Introduction

The MCS6530 is designed to operate in conjunction with the MCS650X
Microprocessor. It is comprised of a mask programmable 1024 x 8 ROM, a
64 x 8 RAM, two 8 bit bi-directional ports capable of directly inter-
facing the Microprocessor unit and peripheral devices and a programmable
interval timer with interrupt, capable of timing in various intervals
from 1 to 262,144 clock periods.

The 1/0 configuration, the interval timer and interrupt capability
are under software control.

* 8 bit bi-directional Data Bus for communication with
the microprocessor unit. .

* Two 8 bit bi-directional ports for direct interface to
peripherals.

* Two I/O Peripheral Data Direction Registers

* Programmable Interval Timer from 1 to 256 x 1024 clock
periods.

* Programmable Interval Timer Interrupt

* C MOS Compatible Peripheral Lines

* Peripheral Pins with Direct Transistor Drive Capability

* Three-State Data Pins

* Up to 7K contiguous ROM with no external decoding

* 1024 x 8 ROM

* 64 x 8 Static RAM

1.6.2 Pinout Description

Figure 1.33 is the pinout diagram of the MCS6530.

1.6.2.1 Reset (RES)

During system initialization a Logic "0" on the RES
input will cause a zeroing of all 1/0 registers. This in turn will cause
all 1/0 buses to act as inputs thus protecting external components from
possible damage and erroneous data while the system is being configured
under software control. The Data Bus Buffers are put into an OFF-STATE
during Reset. Interrupt is disabled when reset. The RES signal must
be held low for at least one clock period when reset is required.

~7l-

R/W

AS

A4

A3

A2

Al

Ag

RES —————>

IRQ/PB7 <—_—_—__>

CS1/PB6 <¢—————_3>

CS2/PB5 <¢————_>

vcc

10 MCS6530

14

15

16

17

18

18

P4200

32

31

30

29

28

27

25

24

23

MCS6530 Pinout Designation

FIGURE 1.32

a

r

PAI

PA2

PA3

PA4

PAS

PAG

PA7

DBO

DBI

DB2

DB3

DB4

DBS

DB6

DB7

PBO

PBI

PB2

PB3

1.6.2.2 Input Clock

The input clock is a system Phase Two clock which can be either a

low level clock Vin < 0.4, Vig > 2.4) or high level clock (Vir < 0.2,

_ +.3
Vin = Vee _ 9)

1.6.2.3 Read/Write (R/W)

The R/W signal is supplied by the microprocessing unit and is used

to control the transfer of data to and from the microprocessing unit and

the MCS6530. A high on the R/W pin allows the processor to read (with pro-

per addressing) the data supplied by the MCS6530. A low on the R/W pin

allows a write (with proper addressing) to the MCS6530.

1.6.2.4 Interrupt Request (IRQ)

The TRO pin is an interrupt pin from the interval timer. This

same pin, if not used as an interrupt, can be used as a peripheral I/0 pin

(PB7). When used as an interrupt, the pin should be set up as an input by

the data direction register. The pin will be normally high with a low indi-

cating an interrupt from the MCS6530. An external pull-up device is not

required; however, if collector-OR'd with other devices, the internal pull-

up may be omitted with a mask option.

1.6.2.5 Data Bus (DO-D7)

The MCS6530 has eight bi-directional data pins (DO-D7). These

pins connect to the system's data lines and allow transfer of data to and

from the microprocessor unit. The output buffers remain in the off state

except when a Read operation occurs.

1.6.2.6 Peripheral Data Ports

The MCS6530 has 16 pins available for peripheral I/0 operations.

Each pin is individually software programmable to act as either an input or

an output. The 16 pins are divided into 2 8-bit ports, PAOQ-PA/ and PBO-PB/7.

PB5, PB6 and PB7 also have other uses which will be discussed in Section

1.6.4. The pins are set up as an input by writing a "0" into the corre-

sponding bit in the data direction register. A "1" into the data direction

register will cause its corresponding bit to be an output. When in the input

mode, the peripheral output buffers are in the "1" state and a pull-up device

acts as less than one TTL load to the peripheral data lines. On a Read

operation, the microprocessor unit reads the peripheral pin. When the

~73-

peripheral device gets information from the MCS6530 it receives data stored

in the data register. The microprocessor will read correct information if

the peripheral lines are greater than 2.0 volts for a "1" and less than 0.8

volts for a "0" as the peripheral pins are all TTL compatible. Pins PAO

and PBO are also capable of sourcing 3 ma at 1.5V, thus making them capable

of Darlington drive.

1.6.2.7 Address Lines (A0-A9)

There are 10 address pins. In addition to these 10, there is the

ROM SELECT pin. The above pins, AOQ-A9 and ROM SELECT, are always used as

addressing pins. There are 2 additional pins which are mask programmable

and can be used either individually or together as CHIP SELECTS. They are

pins PB5 and PB6. When used as peripheral data pins they cannot be used as

chip selects.

1.6.3 Internal Organization

A block diagram of the internal architecture is shown in Figure 1.33.

The MCS6530 is divided into four basic sections, RAM, ROM, I/0 and TIMER.

The RAM and ROM interface directly with the microprocessor through the sys-

tem data bus and address lines. The I/0 section consists of 2 8-bit halves.

Each half contains a Data Direction Register (DDR) and an I/0 Register.

The DDR controls the peripheral output buffers. A "1" written into the DDR

sets up the corresponding peripheral buffer as an output buffer. By this,

it is meant that anything then written into the I/0 Register will appear on

that corresponding peripheral pin. A "0" written into the DDR inhibits the

output buffer from transmitting data from the I/0 Register. The output

buffer remains in the high state making it ready to receive data on the

peripheral lines.

It should be noted that the microprocessor, when reading the I/0

Register, is in fact reading the Peripheral Pin and not the I/0 Register.

The only way the I/0 Register data can be changed is by a microprocessor

Write operation. The Register is not affected by the data on the Periph-

eral Pin.

1.6.3.1 ROM--1K Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines AO-A9,

as well as RS@ are needed to address the entire ROM. With the addition of

-74-

DATA
DIRECTION

| CONTROL |
D3 pad BUS | REGISTER
D4 | BUFFER | | Jo

1/0
REGISTER

A

A9

1/0

REGISTER

B

PA7

PERIPHERAL PAG
DATA PAS
BUFFER PA4

A PA3
PA2
PAI
PAQ

INTERVAL
TIMER

| iRO
Al

eH

aD DECODERS | | pet
B

A3 || PERIPHERAL pRst
A4 t| | DATA | PBA
AS BUFFER PB3
AG B PB?

te PBI
PRO

DATA
DIRECTION
CONTROL
REGISTER

B
*CS1/CS2 ARE MASK OPTIONS IN PLACE OF PB6/PB5

**PB6 MAY BE USED AT IRQ

MCS6530 Internal Architecture

FIGURE 1.33

~75-

CS1 and CS2, up to seven MCS6530s may be addressed, giving 7168 x 8 bits of

contiguous ROM.

1.6.3.2 RAM--64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS6530. It is addressed

by AO-A5 (Byte Select), RSO, A6, A7, A8, AI and, depending on the number

of chips in the system, CS1 and CS2.

1.6.3.3 Internal Peripheral Registers

There are four internal registers, two data direction registers

and two peripheral I/0 data registers. The two data direction registers (A

side and B side) control the direction of data into and out of the periph-

eral pins. For example, a "1" loaded into data direction register A, posi-

tion 3 sets up peripheral pin PA3 as an output. If a "0"' had been loaded

instead, PA3 would be configured as an input. The two data I/0 registers

are used to latch data from the data bus during a Write operation until the

by the microprocessor unit.

Although during a Read operation the microprocessor unit reads the periph-

eral pin, the address is the same as the register. For those pins pro-

grammed as outputs by the data direction registers, the data on the pins

will be the same as that in the I/0 register.

1.6.3.4 Interval Timer

The Timer section of the MCS6530 contains three basic parts: pre-

liminary divide down register, programmable 8-bit register and interrupt

logic. These are illustrated in Figure 1.34.

The interval timer can be programmed to count up to 256 time

intervals. Each time interval can be either 1T, 8T, 64T or 1024T incre-

ments, where T is the system clock period. When a full count is reached,

an interrupt flag is set to a logic "1." After the interrupt flag is set

the internal clock begins counting down to a maximum of -255T. Thus, after

the interrupt flag is set, a Read of the timer will tell how long since the

flag was set up to a maximum of 255T.

When writing to the timer, the high order 8 bits of the timer are

written by the system data bus. If a count of 52 time intervals were to be

counted, 001101 0 0 would be written into the timer section. The time

intervals of 1, 8, 64 or 1024T are decoded from address lines A@ and Al at

this same time. Address line A3, if high during this write operation,

-76-

256 Intervals

oF

D7 D6 Ds Dg Dz Dz Dy Dg R/W AY AS

PROGRAMMABLE

REGISTER

1T, 8T, 64T, or 1024T = Intervals

D6 Ds D4 D3 D2 Dy Da

D7

Basic Elements of Interval Timer

FIGURE 1.34

-77-

enables the interrupt flag onto pin PB/7. PB7 should be programmed as an

input if it is to be used as an interrupt pin. PB/ goes low when an inter-

rupt occurs. When the timer is read prior to the interrupt flag being set,

the number of time intervals remaining will be read, i.e., 51, 50, 49, etc.

Should the timer be read when interrupt occurs, the value read

would be 11113114141. After interrupt, the timer register decrements

at a divide by "1" rate of the system clock. If after interrupt, the timer

is read and a value of 11100100 is read, the time since interrupt is

28T. The value read is in two's complement.

Value read =11100100

00011011

00011100 = 28.

Complement

ADD 1

Thus, to arrive at the total elapsed time, merely do a two's complement add

to the original time written into the timer. Again, assume time written as

00110100 (= 52). With a divide by 8, total time to interrupt is

(52 x 8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T, assum-

ing the value read after interrupt was 11100100.

After interrupt, whenever the timer is written or read the inter-

rupt is reset. However, the reading or writing of the timer at the same

time interrupt occurs will not reset the interrupt flag.

Figure 1.35 illustrates an example of interrupt.

When reading the timer after an interrupt, A3 should be low so as

to disable the IRQ pin. This is done so as to avoid future interrupts until

after another Write timer operation.

1.6.4 Addressing

Addressing of the MCS6530 offers many variations to the user for

greater flexibility. The user may configure his system with RAM in lower

memory, ROM in higher memory, and I/0 registers with interval timers between

the extremes. There are 10 address lines (AO-A9). In addition, there is

the possibility of 3 additional address lines to be used as chip-selects and

to distinguish between ROM, RAM, 1/0 and interval timer. ‘Two of the addi-

tional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins

can also be PB5 and PB6. Whether the pins are used as chip-selects or

peripheral I/0 pins is a mask option and must be specified when ordering

the part. Both pins act independently of each other in that either or both

-78-

@ @ @ @)

$> IN | 0 | | i | 2 | 3 L, Jes] [oi] [ais] [are] [500] [so]

|
WRITE T —J

IRQ FT

SHOULD THE PROGRAMMABLE TIMER REGISTER BE READ AT THE

TIMES NOTED ON THE DIAGRAM ABOVE, IT WOULD CONTAIN:

@® Data written into interval timer is 001100100 = 52, 0 A divide by 8 pre-scale is used.

(2) 00011001 = 25,5 52 - 2n3 -1=§2-26-1=25
@ ov000000 = 0,, s2- US .1=52-51-1=0
@ Interrupt has occurred at $2 pulse #416

S 10101100 Two; complement = 01010100 = 8446 84 + (52x8) = 500 19

Example of Interrupt Generated by Interval Timer

FIGURE 1.35

-79-

pins may be designated as a chip-select. The third additional address line

is RSO. The MCS6502 and MCS6530 in a 2-chip system would use RSO to dis-

tinguish between ROM and non~-ROM sections of the MCS6530. With the ad-

dressing pins available, a total of /K contiguous ROM may be addressed with

no external decode. Below is an example of a l-chip and a 7-chip MCS6530

Addressing Scheme.

1.6.4.1 One-Chip Addressing

Figure 1.36 illustrates a l-chip system decode for the MCS6530.

1.6.4.2 Seven-Chip Addressing

In the 7-chip system the objective would be to have 7K of contigu-

ous ROM, with RAM in low order memory. The 7K of ROM could be placed be-

tween addresses 65,536 and 1024. For this case, assume A13, Al4 and Al5

are all 1 when addressing ROM, and 0 when addressing RAM or I/0. This

would place the 7K ROM between Addresses 65,535 and 57,367. The 2 pins

designated as chip-select or I/0 would be masked programmed as chip-select

pins. Pin RSO would be connected to address line A10. Pins CS1 and CS2

would be connected to address lines All and Al2 respectively. See Figure

1.37.

The two examples shown would allow addressing of the ROM and RAM;

however, once the I/0 timer has been addressed, further decoding is necs-

sary to select which of the I/0 registers are desired, as well as the cod-

ing of the interval timer.

1.6.4.3 1/0 Register--Timer Addressing

Figure 1.38 illustrates the addressing decoding for the internal

elements and timer programming. Address line A2 distinguishes I/0 regis-

ters from the timer. When A2 is low and I/O timer select is high, the 1/0

registers are addressed. Once the I/0 registers are addressed, address

lines Al and AG decode the desired register.

When the timer is selected Al and A@ decode the divide by matrix.

This is discussed further in the Timer Section. In addition, Address A3 is

used to enable the interrupt flag to PB/7.

-80-

CS2

CS1

RSO

A9

A8

A7

A6

A4

A3

A2

Al

Ag

INT. TIMER SEL.

A3
INTERVAL

LY | Lt |
1/O TIMER SEL.

A. Xindicates mask programming

i.e. ROM select = CS1¢RSO

RAM select = CS1*RSO*A9¢A7°AG
1/O TIMER SELECT = CS1eRSO*A9¢A8eA70AG

B. Notice that A8 is a don’t care for

RAM select

C. CS2 can be used as PBS in this example.

MCS6530 One Chip Address Encoding Diagram

FIGURE 1.36

| | TT TT ow
| = > deh | ann TIT TI Py 1
TTS EEE) | | a
. wv

t TSEC ee
| TT EP Cee tr}
Tose CPP ROM SEL.
1 FCCP Peery :
Toe TTT 1 PCPS .
SEA |
1 Tr. PTT a0
De SoS oe EEL 1 PEEP x
TSE TTT

= ——t— AS C----- >> eS eee a rT *
TET
Cr

Al

Ag

The addressing of the ROM select, RAM select and I/O Timer select lines

would be as follows:

CS2 cSsl RSO

Al2 All AIO AQ A&S A7 AG

MCS6530 #1, ROM SELECT 0 0 1 X X X X

RAM SELECT 0 0 0 0 0))

I/O TIMER 0 0 0 1 0 0 0

MCS6530 #2, ROM SELECT 0 1 0 X X X X

RAM SELECT 0 0 0 0 0 0 1

I/O TIMER 0 0 0 1 0 0) 1

MCS6530 #3, ROM SELECT 0 1 1 Xx X Xx X

RAM SELECT 0 0 0) 0 1 0

I/O TIMER 0 0 0 1 0 1 0

MCS6530 #4, ROM SELECT 1 0) X X X X

RAM SELECT 0 0 0 0 0 1 1

I/O TIMER 0 0 0 1 0 1 1

MCS6530 #5, ROM SELECT 1 0 1 X X X X

RAM SELECT 0 0 0 0 1 0 0

I/O TIMER 0 0 0 1 1 0 0

MCS6530 #6, ROM SELECT 1 1 0 X x X X

RAM SELECT 0 0 0 0 1 0 1

I/O TIMER 0 0 0 1 1 0 1

McS6530 #7, ROM SELECT 1 1 1 X X x X

RAM SELECT 0 0 0 0 1 1 0

I/O TIMER 0 0 0 1 1 1 0

* RAM select for MCS6530 #5 would read = A12°A11°A10°A9°A8°A7°A6

MCS6530 Seven Chip Addressing Scheme

FIGURE 1.37

-82.

~£g-

READ ROM

WRITE RAM

READ RAM

WRITE DDRA

READ DDRA

WRITE DDRB

READ DDRB

WRITE PER. REG. A

READ PER. REG. A

WRITE PER. REG. B

READ PER. REG. B

WRITE TIMER

+ 1T W/IRQ to PB7

+,8T WO/IRQ to PB7

+ 64T W/IRQ to PB7

+ 1024T WO/IRQ to PB7

READ TIMER
DISABLE IRQ TO PB7

READ INTERRUPT FLAG

ADDRESSING DECODE

ROM SELECT RAM SELECT 1/0 TIMER SELECT

200 Oo COC OO OO Oo Fr Sc 0OoOCocCOCClKOClUClCMOCUCOCUCUcCUmCUrMhmLhwhHHUCOO PP FP FP FP FP BP EP OO Oo

oOo0 Oo 2000 ee

© © ke

Addressing Decode for I/O Register and Timer

FIGURE 1.38

R/W

FOF OF OF OF CO F

oO Oo Oo 8

Re

a a oo Oo os sD os ns

oO FF O fF

©

o0oo.mUmOUCOUWUCOWOULUCOOUCOlLCUCOCOUCUMMUCSRNKECRR

ee

a

Ag

Oo OC 0 CO FF FF KF Ff Mm KH MS.

Fe Oo FF O&O

cn)

CHAPTER 2

CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 THE SYSTEM CONFIGURATION TASK

The first part of any microprocessor-based design effort is the system con-

figuration task. In fact, this probably requires more creativity from the de-

signer than any other part of the design effort. The goal of the system con-

figuration effort is the generation of a list of components which will make up

the system, a detailed interconnect diagram and a detailed description of the

total system operation. This includes a definition of how the processor will

control the peripheral devices as well as a definition of the internal opera-

tions to be performed. This does not include detailed implementation of the

design such as laying out printed circuit boards and writing programs, but does

involve enough analysis of the total operation to assure that the system will

operate properly after all the hardware and software is assembled.

The technically based selection of components and the definition of the

general operation of the system must be based on consideration of two factors.

These are:

1. System speed requirements

2. System input/output requirements

Both of these factors are interrelated. Therefore, it will usually be necessary

to define an 1/0 configuration and then verify that the processor can operate at

the speed required by the peripheral devices. If there appears to be any diffi-

culty with the I/0 operation, this structure must be re-defined and re-analyzed.

In addition to the speed requirements of the I/0 devices, there are also

general speed requirements for the internal processor operations (arithmetic

operations, data manipulation, etc.). This speed requirement is usually some-

what more flexible than that associated with I/0 but it should be defined along

with any other system requirements. The ultimate test of system speed must wait

for the generation of both the hardware and the program; however, the system

requirements and capability must be analyzed very early in the system develop-

ment process to assure that no problems will arise during the last stages of the

design.

-84-

2.2 INPUT/OUTPUT TECHNIQUES

2.2.1 The General Purpose Input/Output (1/0) Port

Although the concept of the I/0 port was introduced briefly in Sec-

tion 1, and the operation of two MCS6500 family devices which provide gen-

eral purpose I/0 capability has been discussed in Sections 1.5 and 1.6,

little has been said about what factors must be considered when configur-

ing an I/0 structure using these devices.

The general purpose I/0 port consists of eight lines, each of which

can act as either an input or an output. As an input, each line can detect

the state of one switch or can detect one bit of data. As an output, each

line can control one light, solenoid, etc. or can provide one bit of data

to a peripheral device. If this technique is used in peripheral control,

the operation of each line is totally defined in the system program.

For most systems, the general purpose interface device provides more

than adequate speed and flexibility to solve the entire peripheral inter-

face problem. Usually, a cost savings can be realized because of the re-

duced component cost and the necessity of stocking only one type of inter-

face device. In addition, use of the general purpose peripheral interface

device allows the designer to tailor the operation of the interface device

to fit the problem at hand.

The ultimate component selection must be preceded by a study of each

section of the system input/output structure and a study of the overall sys-

tem performance. Ultimately, the set of general purpose and special purpose

peripheral interface devices selected for a system must be chosen to mini-

mize total cost while assuring satisfactory system performance.

~85-

Processor speed is a function of two things. The first is simply the nun-

ber of instructions required to perform the desired operations. The second is

the percentage of processor time required to service interrupts. The typical

system may employ several interrupt signals which occur at fixed intervals. At

times, these may be combined with other interrupts being generated by a periph-

eral device. It is important that the total service time for these interrupts

does not exceed that allowable and that the time available to the processor for

executing the main program is sufficient to allow the system to operate at its

required speed.

During the system configuration process, detailed system programs need not

be generated. However, it will be necessary to write small portions of the

software to verify the speed of execution and to assure proper operation of the

total system.

This chapter will discuss special techniques for the control of the various

components which may be included in a microcomputer system, as well as techniques

for controlling peripheral devices which are attached to the system. A discus-

sion of programming techniques which can be used to optimize the total system

performance is contained in the Programming Manual.

2.2.2 The Special Purpose Peripheral Interface Device

The special purpose, dedicated I/0 device must also be considered in

any microcomputer design. These devices are designed to completely handle

a single well-defined problem; for example, driving a particular printer,

handling a particular type of communications line or driving a scanned dis-

play. These special purpose devices are designed to totally handle their

particular task with very little help from the processor.

-86-

The primary advantage of this type of interface device is that it

requires an absolute minimum amount of attention from the processor. The

major disadvantage of special purpose I/0 is increased component cost. The

total production volume for these devices is less than that of the more

universal I/0 chips and also the total chip size is usually greater.

The use of special purpose peripheral control devices will not be

discussed in this manual. Instead, a detailed study will be made of the

more general problem of configuring the 8-bit bi-directional peripheral

port. In addition, this chapter will cover some special techniques which

can greatly enhance the power of this type of interface device.

2.2.3 Configuring the General Purpose I/0 Port

The 8-bit peripheral control port included on the MCS6520 and the

MCS6530 allows each line to be programmed to act as an input or an output.

This is accomplished when the processor writes a pattern of 1's and 0's

into the data direction register. Writing a 1 causes the pin to become an

outpui, and writing a 6 causes it to act as an input. Aithough this opera-

tion is normally performed only during system initialization, the ability

to do so under program control allows some very important peripheral con-

trol techniques. An example of this is described below.

The process of configuring the general purpose I/0 port involves

first examining the peripheral devices to analyze the various control in-

puts, switches, sensors, data signals, etc. which must be handled by the

microprocessor to properly control the device. Each function must then be

assigned to a line on the I/0 port. The ultimate goal of this process is

the creation of a list of I/0 pins, the function of each pin, and an indi-

cation of whether each pin is to be an input or an output.

Since each line is capable of operating as an input or an output,

and since there is very littie to differentiate one iine from any other,

the actual assignment can be made fairly late in the system development

cycle after consideration of software techniques and printed circuit board

layout. In fact, software considerations may be the only thing which dic-

tates that a signal be connected to one pin or another.

Developing a thorough understanding of the software in the MCS6500

systems will require a detail study of the Programming Manual. However,

several operations which can be performed by the processor and which affect

the assignment of inputs and outputs will be discussed briefly here.

-87~

2.2.3.1 Assignment of Outputs

A major factor in the assignment of output pins can be the ability

of the MCS650X processor to increment and decrement memory. Since the 1/0

port is treated as a location in memory, this incrementing and decrementing

can be used to rapidly set and clear the low order bit in this memory loca-

tion. This is illustrated in Figure 2.1.

Note that this does not affect am

it is used properly as shown. This operation can be performed more rapidly

than several other software techniques which can be used to affect a single

bit. Therefore, control of a single indicator, data line, etc. can be

greatly enhanced by putting it on the low order bit of an I/0 port. This

is the reason the low order bit of both the MCS6530 peripheral ports (PAO

and PBO) provide the ability to drive transistors directly. In many appli-

cations, a simple transistor attached to one of those pins would provide

very convenient control of a motor, lamp, etc.

The ability of the microprocessor to shift data in memory can be

another very important factor in the assignment of outputs. Operations

which require sequential strobe signals can be controlled conveniently by

shifting a single high (or low) signal from pin to pin under software con-

trol. The specific choice of pins can greatly enhance the ease with which

this signal is controlled.

2.2.3.2 Assignment of Inputs

In general, the processor deals with the input data from switches,

keyboards, etc. by reading the data on the I/0 port into the internal regis-

ters of the processor (usually the accumulator) and using the resulting con-

dition of flags in the Processor Status Register to control the program

which is executed. During this transfer process, the N flag in the Proces-

sor Status Register is set equal to the high order bit (bit 7) of the word

read from the I/0 port. This N flag can then be used to cause the processor

to execute different sections of the program (See the Programming Manual,

Chapter 4, for a detailed discussion of Branching). Likewise, by perform-

ing certain instructions, the V flag in the Processor Status Register can

be set equal to bit 6 on the I/O port. This flag can then be used to

affect the program which is executed.

This operation of setting the internal flags from bits 6 and 7 of

the memory word means that making these two lines inputs on an 1/0 port

-~88-

MCS6520 DATA REGISTER

1

LOADED INTO | VOLTAGE ON OUTPUT MCS6520 PINS OF MCS6520
MICROPROCESSOR

HIGH ()2.4V)
LOW ((0.4V)

|_____________» LOW

2

AFTER
DECREMENT
OPERATION

3

AFTER SUBSEQUENT 0] 1| ofo] 1] o/ 0]
INCREMENT
OPERATION

HIGH

LOW

LOW

Control of Low Order Bit of MCS6520 Output Register

FIGURE 2.1

-89-

will allow very convenient testing of the condition of the switches,

sensors, etc. attached to these inputs. If more than two input signals are

to be attached to a port, the additional inputs should be piaced on bit 5,

then bit 4 and so on. The processor can then perform operations which

shift the lower order bits into bit 7 one at a time and sets the N flag

equal to this bit. After each shift the N flag can be used to determine

the actual program which is to be executed. (See the Programming Manual

for a discussion of the Shift instructions.)

From the above example, one should conclude that the assignments

which the designer makes will be very much a function of the software tech-

niques which will be employed in controlling each line. It is very import-

ant that the designer be familiar with these techniques and that he docu-

ment the techniques which he has in mind when making the assignments. This

is particularly important when the system program is to be written by some-

one else. Also, it is important that those doing the system development

work constantly review the I/0 structure to optimize the software in-

volved as the system program is written.

i) NO ‘a Power-On Considerations

Chapter 1, Section 1.3.3 discusses the operation of the system RESET

function. Reference is made to the fact that this can be used to assure

that all I/0 lines come up in a known state when power is applied to the

chip. Although this is a very important function, the designer must assure

himself that this RESET state does not adversely affect the peripheral

devices. This section describes some of the problems which can be encoun-

tered when the system is reset and discusses several techniques which can

be used to assure smooth power-up operation.

The I/0 lines of the MCS6530 and MCS6520 all enter the input state

when the reset line goes to GND (< 0.4V). For the MCS6530 I/0 lines, and

for the Peripheral A port on the MCS6520, these pins will go to +5V DC (Vdd).

This is due to the output structure on these pins. When these lines are in

the input state, the output switch becomes an open circuit but the pull-up

device continues to supply current to the pin.

Figure 2.2 shows a peripheral port which is configured to drive two

solenoids. These solenoids can be controlled properly after the system is

initialized; however, when the manual reset switch is activated, both 1/0

-9n.

+V +V

SOLENOID COILS

OUTPUT
LINES

PERIPHERAL

INTERFACE

DEVICE

MCS6520

FROM
MICDADDANT COND
(YARRA! INU DODUINA

MCS6520 Control of Transistor Driven Solenoids

FIGURE 2.2

-9]-

lines enter the input state, the transistors saturate (close) and the sole-

noids are activated. This can be catastrophic in most mechanical subsys-—

tems, so it is important that this potential condition be understood and

prevented. Figure 2.3 shows two satisfactory solutions to this problem.

The first, Figure 2.3a, requires that a "0" be written into the output line

by the processor to actuate the solenoids. This assures that the solenoids

Fe witch is pressed. Kn ill not be powere he manual reset

However, it does introduce another potential problem. When the reset line

on the peripheral interface device goes low (« 0.4V), the contents of both

the Peripheral Data register and the Data Direction register are cleared to

zeros. If the Data Direction register is set to 1's, both solenoids will

immediately actuate due to the 0 stored in the Peripheral Data register.

This can be avoided completely if the system software first sets the bits

in the Peripheral Data register to a 1 and then sets the Data Direction

register to al. The 1/0 pin will go high when the reset switch is actuated

and will simply stay high through the initialization routine.

Figure 2.3b illustrates a solution which may be more applicable to a

large system or a complex peripheral. In this approach, a separate output

line is used to apply power to the peripheral device. The power to the

entire peripheral or to just the critical elements is kept off until the

entire system is initialized and is ready to run the system program.

On the MCS6520 Peripheral B port, the I/0 lines are open circuit

(high impedance) in the input state. As a result, the configuration in

Figure 2.2 will not cause the same problem on the MCS6520 Peripheral B port

as would be expected on the MCS6530. In the input state, the I/0 pin is

incapable of sourcing any more than a few microamps.

However, if one were to use a solenoid driver as shown in Figure 2.4,

the TTL input structure on the drivers would interpret the high-impedance

state as a logic 1 and would actuate the solenoids. Both the solutions in

Figure 2.3 would be satisfactory in this case. However, the transistors

are connected to the TTL buffer. In addition, the extra output shown in

Figure 2.3b, controlling power to the peripheral device, could actually be

used to enable the solenoid drivers if an enable input is available to

these devices. This configuration is illustrated in Figure 2.5.

~92.

MCS6520 Control of

PNP Transistor Driving

Solenoid Coil

FIGURE 2.5A

MCS6520 Controlling

Both Power and Drivers |

of Solenoid Cell

FIGURE 2.3B

MCS6520 Driving

TTL Buffers

FIGURE 2.4

8 OUTPUT +V

LINES

PERIPHERAL

INTERFACE

DEVICE

SOLENOID +V

COIL +

SOLENOID

COIL

8 OUTPUT POWER CONTROL

Cot TRANSISTOR

coh SOLENOID
PERIPHERAL CELLS

INTERFACE

DEVICE

+V

| > SOLENOID

COILS
PERIPHERAL

INTERFACE

DEVICE

MCS6520

+V

A
TTL

BUFFERS

| |

-93_

+V +V

| SOLENOID cols |

° PERIPHERAL OUTPUT ~]
INTERFACE LINES |
DEVICE

MCS6520

ENABLE SIGNAL

MCS6520 Controlling Solenoids with Enable Signal and TTL Interface

FIGURE 2.5

2.2.5 Handshaking

The MCS6520 provides both interrupt control and data transfer con-

trol capability. The technique for controlling the transfer of data be-

tween the processor and a peripheral device is referred to as handshaking.

In this procedure, each device (the processor or peripheral) is capable of

signalling the other that its operation is complete. The sequence differs

somewhat for transfers into or out of the processor, so they will be dis-

cussed separately below.

2.2.5.1 Handshaking on Data Transfers from the Processor

The transfer of data out of the processor into a peripheral device

is performed by first writing the data into the data register within the

MCS6520. This data then appears on the peripheral output lines where it

can be read by the peripheral device for storage, display, etc.

Control of this data transfer by handshaking requires first that

the processor signal the peripheral device that data is available on the

I/O port. The peripheral device then reads this data and signals to the

processor that the data has been taken and that new data can be made avail-

able. The processor then makes new data available and the cycle is re-

peated.

As described in Chapter 1, the Peripheral B Interface Port on the

MCS6520 is designed to perform handshaking on WRITE operations. The CB2

peripheral control line can be programmed to act as an output which goes

low each time the processor writes data onto the Peripheral B I/O port.

This is the signal which is used to tell the peripheral device that data is

available on these output lines.

The CB2 output line will stay low until the peripheral device sig-

nals the processor that the data is taken. This is accomplished by inter-

rupting the processor through the CBl interrupt input.

The sequence which takes place during the "WRITE" h

operation described above is shown in Figure 2.6.

2.2.5.2 Handshaking on Data Transfers into the Processor

The Peripheral A I/0 port on the MCS6520 is designed to handshake

on data transfers from the peripheral device into the processor. In this

sequence, the peripheral device must signal the processor that data is

available and the processor must signal back that data was taken. This is

basically the same sequence as that performed in the previous operation.

The CAl interrupt input is used to interrupt the processor to indicate that

there is data available on the Peripheral A I/0 port. The peripheral de-

vice must then hold that data there until the processor reads it into its

internal registers. When the processor reads the Peripheral A I/O port,

the CA2 peripheral control line goes low to signal to the peripheral device

that the data has been taken and new data can be made available. This en-

tire sequence is shown in Figure 2.7.

The handshaking operations described above can be an extremely

powerful technique for interfacing data storage devices or, in general, any

device which must transfer blocks of data and which has a variable re-

sponse time. If the processor cannot predict the speed with which the

-95.

peripheral takes data, for instance, it must rely

signal that it has done so.

Initiating the data transfer sequence is

through a set of I/O lines separate from the port

on the peripheral to

usually accomplished

rth to Wii shlid s transferring FAs

the data. However, once the sequence is under way, the processor must

deal with the peripheral device only when an interrupt has occurred.

This allows the processor to execute the primary system program while

still servicing these peripheral devices.

-96-

ENABLE | | | | | | | | | | | | | | |

1 (a

ADDRESS
_ Ge Ce

—
R/W ‘| |

2
DATA BUS {5 ¢§

a PERIPHERAL 5
DATA a

1. Processor puts out address of peripheral device and changes R/W
signal to write enable (low).

2. During phase two processor puts out data on Data Bus.

3. Data from the processor is accepted by the MCS6520 on the
falling edge of the enable clock.

4. Peripheral Interface device now begins the handshake by signaling the
peripheral device that data is available to read on the output

5. When the external peripheral device reads the data on the output
port it will respond by a change in CBl.

6. This change in CBl is followed by a positive transition of CB2
signalling the processor that data was accepted.

Write Handshake Sequence

FIGURE 2.6

~97.~

ENABLE tL La TELE Ly

SNES

PERIPHERAL 1
DATA 9

ES

CAI 2 x

——_—_—_—_—_—____ OOo

IRQ 4 |
aS

ten el

ADDRESS s\
ee

R/W 5
| a

DATA BUS = —————___ re

Data is put out by peripheral device.

peripheral interface device is signaled by CAl that the
data is ready to be read at the input port.

is put in the high state.

processor is signalled that new data is ready to be read
by a low level on the IRQ line.

processor begins servicing the Interrupt request and during

routine the processor will put out the read signal and the

Address of the Peripheral Interface device.

. The Peripheral interface will transfer the new data from the peripheral

device to the microprocessor through the data bus.

1. New

2. The

new

3. CA2

4. The

5. The

the

6

7 . When Data has been transferred the peripheral device will be signaled

by CA2 going low.

Read Handshake Sequence

FIGURE 2.7
-98-

2.3 CONFIGURING THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE SUPPORT CHIPS.

The system block diagram (Figure 2.8) shows the basic data paths which al-

low the MCS6500 system to operate. Data Bus, Address Bus, R/W signal, etc. are

shown as simple connections between the various chips in the system. Although

these data paths will exist in any system, no matter how complex, each element

of the microprocessor interface must be examined to assure that each chip is

properly driven with signals which meet all specifications for the device, to

assure that the inter-chip timing is proper and to assure that the overall sys-

tem is operating as required.

2.3.1 Assignment of Addresses in the MCS6500 System

The only method which the microprocessor has for selecting between

the various RAMs, ROMs, etc. in a system is through the address output

lines. For this reason, the designer must use these lines very carefully

to achieve minimum system cost and to assure satisfactory system perfor-

mance.

Before looking at how the address lines can be configured to minimize

total system cost or program execution time, the designer should understand

how the binary value associated with each address line is related to the

total address space available to the microprocessor and how the AND func-

tion of various address lines can be used to select large blocks of ad-

dresses. Figure 2.9 illustrates the state of the three high-order address

lines for the entire address space available to the MCS650X. Note that the

highest order address line is a logic 1 for exactly half of the available

address. The AND function of the two highest order address lines is a

logic 1 for one-fourth of the available addresses, and so forth. Figure 2.9

also illustrates severai AND functions derived from the three highest order

address lines. Each is true for a different block of the available ad-

dresses.

Generation of the AND function of various high order address lines

is extremely important because of the chip select techniques employed on

the processor support chips. As described in Chapter 1, Section 1.5.2.4,

the MCS6520 has three chip-select lines. The entire chip is selected for

reading or writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low

-99.

*UTTIOULNOD
*UATIOULNOD

|
i

WOUd
|

ml © E Zz © Oo

SA
NI
T

V
L
V
d

T
O
U
L
N
O
D

(WOUd YO WOW)
(WVu)

SHOIAgG

A
D
V
U
O
L
S

A
N
V
U
O
L
S

W
V
A
N
O
U
d

A
O
V
A
N
A
I
N
I

WVw90uUd
uo

V
L
V
a

=

_
‘
T
V
a
a
H
d
r
d
a
d

DATA

DATA

Se Li

S TOULNOD

‘JAXT

‘D0Ud

8S

Sa

*UaTIOWLNOD

S

3

9

~

hs

48

8

=

vA

DO

S

—

‘2

Ps

SANIT
V
L
V
d

T
O
U
L
N
O
S
D

(Z0S9) INAS

* OPTIONAL

Organization of Microcomputer System

FIGURE 2.8

-100-

MICROPROCESSOR HIGH ORDER ADDRESS LOGIC “AND” FUNCTION

ADDRESS ADDRESS ADDRESS LINE AHeAH-1 AHeAH-IeAH-2
SPACE LINEAH LINE AH-1 AH-2

0 0 0 0 9
0
0
1
1

0 1
1 0

0
0
1
1

0 i i

1 0 0
0
0
1
1

0 1 0 0
1 0 1 0

0 0

: 1
; 1

1 1 1 1 1

Example of “AND” Function Using High Order Address Lines

FIGURE 2.9

-101-

(<< 0.4V). Selection of the address lines which enable the various chips

in the system is a very basic but very important part of the system con-

figuration task.

It is important to note here that very few microprocessor-based sys-

tems actually require that the processors be able to access a full 65,536

words. In fact, most systems can be programmed in less than 2,000 words

for program and data memory. The full address space is made available pri-

marily because it allows the configuration of systems with an absolute

minimum of separate decoding chips between the processor and the support

chips. It is possible to assign any block of address to each type of chip

(RAM, ROM, peripheral interface chips, etc.) in the system. However, each

of the assigned addresses must be mutually exclusive. Only one of the sup-

port chips should be selected for every address used in the system program.

2.3.1.1 ROM Address Assignment

The assignment of ROM addresses is dictated by the fact that the

interrupt and RESET vectors must be located in the 6 high-order words in

memory. These are fixed vectors and must be stored permanently in these

locations. For this reason, the program memory (usually ROM) is usually

assigned the high order addresses. In fact, the recommended procedure is

to use Ai5 (Ai2 for MCS6504 and Aili for MCS6503 and MCS6505) to select

program ROM.

2.3.1.2 RAM Address Assignment

There are several factors which determine the location of the RAM

in an MCS650X-based system. Data stored in memory under control of the in-

ternal processor Stack Pointer will always go into Page One (ADH = 01).

Also, the entire set of Page Zero addressing modes relies on there being

data storage RAM in Page Zero. For this reason, the RAM in a MCS650X~based

system should be placed in the low order addresses in memory.

With the RAM in low order memory and the ROM in high order memory,

the peripherai interface devices must go somewhere in between. This is

accomplished in Figure 2.10 by using A1l5 - Al4 to select ROMs, Al5 to select RAM,

and A15 - Al4 to select all peripheral interface devices. This allows dif-

ferentiation between the types of support chips. The addressing structure

can be completed by allowing for selection of each chip in the groups.

-102-

RAM

MICRO

PROCESSOR , CS1

CS2_—| Mcs6520

MCS6520

MCS6520

TO ADDITIONAL MCS6520’s AND MEMORY

Typical Address Assignments

FIGURE 2.10

-103-

“The addresses which select the various registers, peripheral

ports, etc. within the peripheral interface devices normally used will not

be sequential. For this reason, it is normally recommended that the tech-

nique shown in Figure 2.10 be used to differentiate between the peripheral

interface chips. This allows selection of 12 devices with no decoding in a

MCS6501~ or MCS6502-based system, up to nine MCS6520 Qu evices in a MCS6504-

based system, and up to eight devices in a MCS6503 and MCS6505-based system.

2.3.2 Additional Address Assignment Techniques

In many systems, the techniques illustrated above may not represent

the best solution to the system problem. This is particularly true if pro-

gram execution speed is a primary consideration. The time required to

access the peripheral devices can be reduced by putting these devices in

Page Zero. The entire set of Page Zero addressing modes can then be used

fo as Oo access th a addition, the polling of the MCS6520 control
~_— 4J..4 ~.-+

to access tnese devices. ir a

registers during interrupt servicing can be facilitated greatly by putting

the control registers in sequential addresses. These registers can then be

accessed using the Page Zero, Indexed addressing mode described in the Pro-

gramming Manual. The address interconnect which allows this is shown in

Figure 2.11. Note that this implementation requires external address de-

coding chips but for the system requiring it, this incremental cost will

result in higher operating speeds.

The system designer must become familiar with the addressing lines

and their effect on the address space available to the processor. Even

more important, there is a significant relationship between software and

hardware in microprocessor systems and a full understanding of both can

allow optimization of the trade-off between speed and cost for the system

under design.

2.3.3 Interrupts

The basic concept of interrupts is introduced in Chapter 1, Section

1.3.2 of this manual. However, little is said there about the hardware and

software techniques which are required to assure proper implementation of

~104-

MCS650X

MCS6520

MCS6520

MCS6520

> Vv

1 OF 8 CS! MCS6520

DECODER CS2

RAM
CSI
CS2

LLAL

TO OTHER

6520's

Page Zero Chip Select Addressing Scheme

FIGURE 2.11

-105-

the interrupt system. This section is designed to introduce the designer

to the detaiis of interrupts and interrupt servicing techniques.

2.3.3.1 Interrupt Prioritizing

Chapter 1 makes reference to various techniques for hardware

prioritizing of interrupts to allow more rapid servicing of interrupts.

The goal of this hardware is to allow the processor to go directly to the

program which services the highest priority active interrupt without taking

the time to poll each interrupting device.

All hardware prioritizing techniques are based on the "priority

encoder" shown in Figure 2.12. This device has eight inputs which are

assigned a priority level from one to eight and generates a three-bit bi-

nary code corresponding to the highest priority active input signal.

The generation of this three-bit code is in reality a trivial task

for the designer. However, relating this code to the address of the corre-

sponding interrupt service routine is much more difficult and represents an

opportunity for creativity on the part of the designer. Several solutions

will be illustrated here todemonstrate what can be done. These are cer-

tainly not assumed to be the only solutions. Each system must be considered

separately to assure that the implementation chosen is as close to optimum.

as possibile.

2.3.3.2 Example 1: Selecting the Interrupt Vector

The final step of interrupt response within the processor is the

fetching of an interrupt vector from two fixed addresses in memory. The

interrupt vector located in these fixed addresses identifies the address of

the software which the processor executes to poll the interrupting devices.

Instead of pointing to the polling routine, it would be much faster to go

directly to the software which actually services the interrupt. This re-

quires a unique vector for each interrupt.

The technique illustrated in Figure 2.12 assumes that the inter-

rupt vectors are located in ROM at addresses below that normally assigned

to the interrupt vector. The decoder detects the fact that the processor

is reading FFFE or FFFF. At this time the address inputs AD1, AD2 and AD3

into the ROM are driven from the priority encoder. Instead of accessing

FFFE or FFFF, the interrupt vector will come from two addresses selected by

-106-

ING Cs
Al4
Al3

A12

All

A10

Ag [ge
A8& a ‘ coe
A6 “ PCE
A4

A3 *O 7 8

A2

Al

AO

a
QUAD

DATA

SELECT

MICROPROCESSOR
PRIORITY

ENCODER

| th Lt |
(EY
EEE
eer

INTERRUPT INPUTS

Selecting the Interrupt Vector

FIGURE 2.12

-107-

the priority encoder. The actual hardware involved is quite simple and the

interrupt response time is an absolute minimum.

2.3.3.3 Example 2: Using the Processor Software Power

These several solutions to the vectored interrupt problem take ad-

vantage of certain instructions which can be performed by the processor.

The first of these uses an instruction called the Jump Indirect. This in-

struction causes the processor to begin executing the program located at

that address contained in two sequential memory locations.

As in Example 1, the three-bit output from the priority encoder

becomes part of the address of the interrupt software. If the output of

the priority encoder is connected to the inputs of a peripheral interface

device, the processor can then perform a Jump Indirect operation using the

address on the two peripheral I/0 ports. This is shown in Figure 2.13.

Another solution which takes advantage of the processor software

is shown in Figure 2.14. Once again the output of the priority encoder is

connected to the inputs of a peripheral I/0 port. However, in this ap-

proach, the priority encoder is connected to the low order bits and the

other bits can be used as control or input lines for other functions.

In this method, the three bits from the priority encoder will be-

come part of an address established in memory. This address will then be

used in a Jump Indirect instruction as before. This operation is detailed

in Figure 2.15.

2.3.4 The Application of RDY to Controlling the Memory Interface

The ability to stop the microprocessor can be extremely important

when using memory devices which are not directly compatible with the

MCS650X family.

The RDY line on the MCS6501, MCS6502 and MCS6505 can be used to stop

the processor in any "non write" cycle, i.e., any cycle in which the pro-

cessor is not attempting to write data into memory. The processor can be

stopped for any number of clock cycles, from one cycle for interfacing with

slow memories to many cycles for DMA applications and for single cycle exe-

cution.

2.3.4.1 Interfacing Slow PROMs

One of the principal applications of RDY is in the control of

light-erasable PROMs or EAROMs. These devices generally have longer access

-108-

TO

FIXED
HERAL

PERIP ADDRESS
INTERFACE

DATA FOR
EVICE

DEVIC INTERRUPT

MCS6520 SOFTWARE

MICROPROCESSOR

PRIORITY

ENCODER

NY
INTERRUPT INPUTS

NOTE: CONNECTING THE ADDRESS LINES AS

SHOWN PUTS THE TWO MCS6520 I/O

PORTS IN SEQUENTIAL ADDRESSES.

Using MCS6520 for Jump Indirect Interrupt Routines

FIGURE 2.13

-109-

| | > PB7)

ALS PBO

| AG me PERIPHERAL PBS | TO OTHER

Al2 INTERFACE PERIPHERAL

All DEVICE DEVICES

A10 MCS6520 INPUTS OR

A9 OUTPUTS
MICRO qa

PROCESSOR |,

| A6 |

| AS t—m pa7-———>_ |
A4 PA6

A3 PAS
A2 PA4

Al RSO PA3
AO ce RS1 PA2 ‘

PAI
PAO

PRIORITY
ENCODER

\ eee
INTERRUPT INPUTS

Priority Encoder Connected to Low Order Bits of MCS6520.

FIGURE 2.14 a

-110-

PERIPHERAL PA7 TO OTHER

INTERFACE PA6 PERIPHERAL

DEVICE PAS DEVICES INTERRUPT INPUTS
ree

(MCS6520) = PA4
MICRO

PROCESSOR PAS
PRIORITY

ENCODER

Priority Encoder to Peripheral Interface Scheme

FIGURE 2.14 b

INTVEC --> PHA Receive Interrupt Vector

TXA

PHA

LDA IPA AO Read PIA Port

AND #0E Clear PIA

TAX Transfer Acc. to X index reg.

LDA VEC TAB,X Load Acc. from Interrupt Vector

Table stored in memory

STA JMP 1 Set Low Order Address Byte

of Interrupt Vector

INX Increment X Index Register

LDA VEC TAB,X Load Acc. from Interrupt Vector

Table

STA JMP1+1 Set high order Address Byte

of Interrupt Vector

JMP (JMP1) Go to Interrupt Service

Software

Software Program to Implement Interrupt from above Hardware Configuration

FIGURE 2.15

-111-

times than that required by the microprocessor when operation at 1 MHz

clock frequency and are incapable of making data available on the data bus

within 100 nanoseconds of the end of the Phase Two ciock puise. The Phase

Two clock pulse is used to latch data or instructions on the data bus;

therefore, if the data is not available at the correct time, the processor

must be held up for one full cycle. The instruction will then be latched

on the following Phase Two pulse. Execution of the instruction will then

proceed during the next cycle. Suggested logic for performing this func-

tion is shown in Figure 2.16.

Note that the data present on the data bus during the @2 clock

pulse after RDY goes high is the data that will be used in the instruction

execution which takes place during the following cycle.

2.3.4.2 Direct Memory Address (DMA) Techniques

Transfer of data from peripheral storage devices into the micro-

computer data memory (RAM) can normally be handled one byte at a time under

control of the microprocessor. However, in large data terminals, control

systems, etc. the primary data storage device may be a high-speed tape or

disk. In systems such as these, the data transfer from the storage device

into memory must be performed at speeds greater than the processor can

handle. The control of the transfer must be performed outside of the pro-

cessor in a separate controller and the peripheral device must gain direct

access to the system RAM.

Direct Memory Access requires primarily that the processor have no

need to access the memory involved. This is generally assured by stopping

the processor completely. The DMA controller must then gain access to the

R/W line and both the address and data busses on the memory unit.

Provision for stopping the processor is available on the MCS6501,

MCS6502 and MCS6505. This is accomplished by pulling the RDY line on the

processor to GND (< 0.4V). The processor will stop in the first non-write

cycle with the data bus in the high-impedance state. After the processor

has stopped, the DMA controller must provide the address and data for the

memory and must control R/W if data is being transferred into memory.

Providing addresses for the memories can be accomplished by gating

addresses from either the DMA controller or the microprocessor into the

memories. This can be accomplished very easily with a Quad 2-input data

-112-

selector. During the DMA operation, the addresses fed to the memories are

those generated by the DMA controller. After the DMA operation is complete,

the input select signal to the data selector is inverted and the addresses

generated by the processor once again determine which memory word is being

accessed. The R/W line to the memories can be controlled in the same way

as the address lines.

The data bus must be controlled in a somewhat different manner.

This is necessitated by the fact that these lines are "bi-directional"; the

data bus pins on the processor and the support chips act as both an input

and an output. The output buffers in each of these chips are capable of

entering a high impedance state to allow any of the devices to drive the

bus during data and instruction transfers. For this reason, a bi-direc-

tional, "three-state" bus extender is required to interface the DMA con-

troller to the system data bus. The logic necessary to provide full address

bus and data bus control for DMA applications is shown in Figure 2.17.

The MCS6501 provides a Bus Available output to signal the DMA con-

troller that the processor has stopped and that the DMA controller can pro-

ceed to access memory for reading and writing data. This signal will go

high during the Phase Two clock in the first Read cycle (R/W = 1) which

follows RDY going low. This will occur immediately if RDY is pulled to GND

(< 0.4V) during a Read cycle. The discussion of the processors in Section 1

describes this in detail.

The MCS6502, MCS6503, MCS6504 and MCS6505 do not make available

the Bus Available signal. However, these processors still stop in the

first non-write cycle. For this reason, the logic shown in Figure 2.17

should be used to generate a Bus Available signal for the DMA controller.

2.3.4.3 Control of Dynamic RAMs in the MCS6500 System

For systems which must contain a large quantity of Read/Write

memory (RAM), the 4096-bit dynamic RAMs can provide the required storage

with a minimum number of parts. Currently available dynamic RAMs are cap-

able of storing four times as much data as similar static devices. How-

ever, there is one major drawback to these devices--they must be refreshed

periodically. For most devices currently available, this refresh period is

-113-

~
“J—K” FLIP-FLOP

ADDRESS PROM ADDRESS j

LINES DETECTION

Cleerer ere SEER

‘ K Q RDY

g1 CLOCK ————__ ee

Interfacing Scheme for Slow PROM’s

FIGURE 2.16

“Dp” TYPE

FLIP-FLOP

BA

Logic Used to Generate Bus Available Signal for DMA Applications

FIGURE 2.17

-114-

requires 32 Read operations which can be performed all at once every 2

milliseconds, or 1 approximately every 64 microseconds.

Unless a separate controller is used to perform this refresh

operation, the use of dynamic memories can be very detrimental to system

performance.

As with any Direct Memory Access, the processor must be stopped to

assure that the processor and the DMA controller are not attempting to

access the memories concurrently. The RDY input provides this capability.

A counter operating directly from the system clock will provide a very con-

venient refresh signal. Each time the counter goes through a count of 63,

a "refresh request" pulse is generated. The actual memory refresh opera-

tion must take place during a Read operation with the processor stopped for

1 cycle. Determining when the processor has stopped is exactly the same

problem as in DMA operations. The MCS6501 will generate a Bus Available

pulse when the processor has stopped. In the other processors, the control-

ler must pull the RDY line low and must then examine the R/W line to deter-

mine when the processor is in a Read cycie.

The specific operation performed during the refresh cycle is a

function of the devices being used. However, it should be noted the time

available for refreshing the memory is "N - 1/2" cycles, where N is the

number of cycles that the processor is stopped. This formula is based on

the fact that the first half cycle is lost due to the fact that BA does not

go high until §2 in the MCS6501 and that the state of the R/W line cannot

be considered valid until $2. Control of the memory address lines must be

returned to the processor at the beginning of $1 if the memories are to

have a full cycle to make valid data available on the data bus. This leaves

one-half cycle available to perform the refresh operation if the processor

is stopped for one cycle. A full 1-1/2 cycles can be made available by

stopping the processor for two cycles. This iatter implementation is more

compatible with most dynamic RAMs currently available.

As described above, a primary problem in the implementation of

dynamic RAM systems is knowing when the processor has stopped. A full one-

half cycle is required in the implementations described above. The MCS6502,

however, provides a signal which can be used to predict that the processor

will stop in the very next cycle. This is the SYNC signal. It is impossible

-115-

for a Write operation to immediately follow an instruction fetch cycle.

This allows the memory refresh controller to assume control of the address

lines at the beginning of that cycie instead of after the trailing edge of

Ol.

The RDY iine is puiied iow on §1 and the processor is guaranteed .

to stop. Control of the address lines is returned to the processor on the

next $1 and RDY is set high at the same time. The result is the refresh

logic had a full 1 cycle to refresh the memories and the processor lost only

i cycle of execution time. A suggested configuration for this control logic

is shown in Figure 2.18.

REFRESH
REFRESH GRANT
REQUEST (EO RDY AND

». SYNC
CONTROL)

Dy)

Control Logic for Refresh Signal for Dynamic RAMS

FIGURE 2.18

-116-

2.3.5 Hold-Time Control--MCS6501

The data bus hold time required by the MCS6500 family parts is de-

fined in Chapter 1. Each chip in the system requires that the data on the

data bus be held for 10 nanoseconds past the trailing edge of the Phase Two

clock pulse. Also, each device is guaranteed to hold data for this length

of time to assure proper operation of the other devices in the system.

This only assures that the family parts will work together. Operating with

other RAMs and peripheral devices requires that a careful study be made of

the timing requirements. This section discusses techniques for properly

interfacing RAMs which require more than 10 ns hold time guaranteed by the |

processor. These techniques are applicable primarily to the MCS6501 since

this device uses the input clocks and the DBE input. .

The data which is to be written into memory is actually available on

the inputs to the processor data bus buffers from the beginning of the Phase

One clock pulse. This data is normally gated onto the bus during Phase Two.

However, if greater hold time is required, the designer can take advantage

of the fact that this data can really be gated out during Phase One. This

requires that a delay be provided between the Phase Two and Phase One clock

pulses. The DBE output can then be connected to a Phase One pulse to cause

the data to remain on the bus past Phase Two pulse which is used to latch

data in memory. This timing is shown in Figure 2.19.

-117-

5
2 — reir

ADDRESS BUS

R/W

| | pt

DATA BUS

|
—| ft EXTRA HOLD TIME

Timing Analysis of Data Hold Time

FIGURE 2.19

-118-

2.4 ADDITIONAL SYSTEM CONSIDERATIONS

After the basic system configuration is complete, extensive breadboarding

and testing is usually required before the design is finalized. However, this

breadboarding and evaluation must be preceded by a complete evaluation of the

cost and performance of the proposed design to assure that the various goals of

the project will be met.

The first step in evaluating the design is to estimate the amount of ROM

and RAM which will be required and to estimate the number and type of interface

devices required to control the peripherals

2.4.1 Peripheral Interface Devices

The number and type of peripheral devices can generally be estimated

very accurately. However, it is important to keep in mind that these esti-

mates must be subject to review after a full analysis of system performance

is completed. The designer may find it necessary to use a special-purpose

interface part or to redesign the I/0 structure if the evaluation of system

performance reveals that the system cannot operate at the required speed.

Use of special-purpose peripheral interface parts will reduce the number of

tasks which must be handled by the processor and consequently can increase

the overall system speed, but this generally involves additional component

cost.

Likewise, the use of a fully vectored interrupt can lead to increased

performance at increased cost. The goal of any design program must be to

meet all the system performance at the minimum possible cost.

After the various peripheral devices in the system have been evalu-

ated to determine the number of inputs and outputs required, the total re-

quired by all peripherals can be divided by 16 to determine the number of

devices required. This is a good first approximation which will be re-

evaluated as the system development progresses.

2.4.2 RAM

The evaluation of the amount of RAM required by the system is a some-

what more difficult nrohlem than estimation e
art nh

Se eee rc == ee re . wesop ae eral dey

due primarily to the fact that much of the RAM is required by the system

software as working storage, such as storage of immediate results in

~]19-

arithmetic operations. Since the system program will probably not be

written when these estimates are first attempted, the probability of error

in this portion of the estimate may be fairly high.

In addition to working storage, the RAM must provide storage for:

i. The Stack; this is described in the Programming Manual.

2. Peripheral input data storage.

3. Peripheral output data storage.

Items 2 and 3 above can be evaluated quite accurately since a de-

tailed analysis of the peripheral devices has usually been completed when

these estimates are first attempted. In general, a block of RAM must be

made available for each peripheral device. The amount of RAM required for

each is a function of the type of peripheral device being interfaced and

just how the device is to be controlled.

The amount of RAM required by the stack is a function of both the

interrupt structure and the system software. As a result, an estimate of

this requirement must be based on the system programmer's best estimates

of his requirements. This should be combined with an estimate of the re-

quired working storage and the peripheral data storage requirements to ob-

tain an estimate of the total system RAM.

2.4.3 ROM

The amount of ROM required in a system cannot be determined accu-

rately until the system program is completed. However, by partitioning the

system program into definable pieces, an estimate can be made of each task

and the total can be obtained of the ROM required by each section.

Most programs consist of easily defined sections such as the software

for each peripheral device, arithmetic routines, etc. These are the pieces

which should be examined separately to estimate the ROM required by each.

-1]20-

2.5 EVALUATING SYSTEM PERFORMANCE

As discussed in the previous section, the peripheral interface structure

for a system is fairly easy to configure if one assumes that MCS6520-type de-

vices are used. However, before going too far into hardware construction, it is

important that the total system performance be evaluated to minimize the proba-

bility that major problems will arise in the later stages of the design.

Evaluating system performance involves first determining whether or not

the processor is capable of processing all interrupts with the speed required

and then determining that the processor has sufficient time to perform non-

interrupt operations.

The prioritized interrupt structure assumes that at times, more than one

interrupt will occur and that there will be delays encountered in servicing some

interrupts caused by the presence of other interrupts. This structure will per-

form satisfactorily if these delays are not too great.

The interrupt processing time should be evaluated starting with the highest

priority interrupt, then going to the next highest priority, each time keeping

in mind the total time which can be lost due to concurrent higher priority

interrupts. Each time an interrupt is examined, the worst microprocessor re-

sponse time which can be encountered should be estimated. If this time is still

adequate for the function being handled by the interrupt, that aspect of the

system operation can be expected to perform satisfactorily.

The ability of the MCS650X microprocessors to handle interrupts quickly and

conveniently represents one of the real strengths of this microprocessor family.

However, in any system being developed, it is important that the percentage of

processor time spent servicing interrupts not be so large that the internal data

handling, arithmetic operations, etc. cannot be executed properly.

Since the interrupts are usually asynchronous and are not related directly

to the main line program, the time lost to interrupts can usually be viewed as

an average percentage of the total time. The speed with which the main program

can be executed will be reduced by this percentage.

The interrupt service routines are usually short and easy to evaluate.

However, the main program is much more difficult to estimate. Fortunately, it

is also usually much less critical. Those operations which must meet a

-121-

particular speed requirement can be examined in detail by the programmer to de-

termine the execution time. This estimated execution time must then be reduced

f= to allow for the (tT ct ime lost to interrupts.

The final step to assuring satisfactory system performance is a worst-case

analysis. This is to determine if there are any places in the program where

worst-case interrupts can cause excessive delays in the execution of other pro- i

grams being executed. Although the effort involved fos n a complete worst-case

analysis is usually excessive, this is one part of the system development task

which can lead to significantly greater assurance of success for the entire de-

velopment process.

-122-

BRINGING UP THE MCS6500 MICROCOMPUTER SYSTEM

3.0 INTRODUCTION TO MICROCOMPUTER TESTING

After many hours of planning, hardware construction, and programming effort,

the microcomputer system designer must face what can be his most difficult task:

"bringing up" his system. The modern microcomputer with its minimum chip count,

and its minimum number of control and data lines represents a tremendous advance

in system design when everything is working properly. However, it can also repre-

sent a testing nightmare to the designer who is attempting to trouble-shoot the

hardware and software which constitute the total design.

A microcomputer lacks many of the things which make testing of conventional

logic relatively convenient. To begin with, one simply cannot see most of the

control signals, data transfers, etc. which allow the system to operate. In

addition, it is impossible to examine directly the contents of the registers and

latches which store data within the processor. This data can only be examined

indirectly by looking at the signais on the inputs and outputs to the chip at

the proper time.

This problem is compounded by the fact that many programs must be tested

"dynamically"; i.e., the system must be running at its full operating speed with

non-recurring events or with a total lack of usable oscilloscope triggering

signals.

For these and many other reasons, it is important that the system designer

build effective testing capability into both his hardware and his software.

This is particularly true for the pre-production prototypes. When combined with

the procedures discussed below, this will minimize both the time and the effort

spent in producing that first operational system. After the program and the

hardware are completely debugged, many of the testing tools discussed below can

be removed from the prototype design without affecting system performance. This

allows the designer to arrive at his final production design very shortly after

he has proven that the prototypes are operating satisfactorily.

-123-

3.1 STATIC TESTING

3.1.1 Introduction

Static testing, i.e., execution of the program, one cycle or one

instruction at a time, is the first step in the checkout of any system.

In this way, the general flow of the program can be examined and for much

of the program the validity of data transfers into and out of memory can

be verified. As shown in Figure 3.1, the logic necessary to control RDY

to allow Single Cycle and Single Instruction Execution is relatively

simple. This hardware and its use in system testing are discussed below.

3.1.2 Single Cycle Execution

The timing required for Single Cycle Execution is shown in Figure

3.2. In this operation, the RDY line has been brought low (GND) to halt

the processor. To allow execution of a single cycle, the RDY line goes

high (+2.4V), for one cycle each time the Single Cycle switch is acti-

vated. Note that the RDY line goes high while the $), clock is high and

the internal timing counter advances on the next 9) clock pulse.

Single cycle operation allows stopping the processor in any cycle

except a WRITE cycle. This allows detailed examination of all cycles of

the instruction fetch operation. In addition, it permits detailed examina-

tion of operand fetches. Thus, it is possible to verify the operation of

most of the hardware involved in memory addressing and control. It is also

possible to verify the operation of most of the peripheral interface hard-

ware. This can greatly reduce the time required to test the full dynamic

operation of the peripheral device.

Note that if depressing the Single Cycle switch allows the processor

to advance into a WRITE cycle, the processor will complete this cycle and

will then stop in the first READ cycle (R/W = 1) which follows. This tim-

ing is shown in Figure 3.2.

Appendix A contains a detailed summary of the data which should

appear on the address and data lines during each cycle of the MCS6501 and

MCS6502 instructions.

Note that the processor often puts out an address and fetches data

which it ignores. This is an inherent feature of the processor which uses

a "look ahead" approach to pipelining. Examination of the SYNC signal will

allow the designer to keep track of exactly when the data fetched from

memory is utilized within the processor and when it is ignored.

~124-

“Scl-

—— TO SYSTEM RESET

+5 Vv.

O NO

reset [8
ee

RUN _

RUN/HALT o HALT _

= (TOGGLE)
+5V

SYNC > _

LED TO INDICATE
“SYNC" CYCLE

NC

SINGLE
CYCLE NO oho TT

= (MOM)
o)

OO

NO
SINGLE °
INSTRUCTION NC _

= (MOM)

O+sy

aw
TO DISPLAY LATCH ENABLE

RAW I>
(EXAMPLE | HEWLETT - PACKARD

|_| p 5082-7340 DISPLAYS)

2-INPUT NAND
“D" FLIP-FLOP
2- INPUT OR

INVERTER
3- INPUT NAND
2- INPUT NAND

OPEN COLLECTOR_

“WRITE” CYCLE

[tele tees
|

Suggested Static Test Control Logic

FIGURE 3.1

~92I-

v1 SLE $e
” “LPL LLP LL a LL LLL
“HALT”? SWITCH = —— ss
(NOTE 3) LC

“SINGLE CYCLE” SWITCH | |
(NOTE 3) oh

RDY Le

hI
R/W

INTERNAL PROCESSOR STATES

1 st Po
Tl eo

Lo

NOTES: 1. “§$ INDICATES AN UNDETERMINED TIME PERIOD DURING WHICH THE SIGNAL WILL CHANGE.

2. THE DATA BUS ENTERS THE HIGH-IMPEDANCE STATE DURING EACH PHASE ONE PULSE. HOWEVER,
WHILE THE PROCESSOR IS STOPPED THE DATA BUS WILL APPEAR TO REMAIN HIGH OR LOW AS SHOWN.

3. SWITCH ACTUATION IS INDICATED BY A LOW SIGNAL.

T2 —<——

Single Cycle Timing

FIGURE 3.2

A very simple "data trap" can be built into prototype systems to

allow examination of the address and data generated by the processor during

WRITE cycles. This trap may latch the contents of both the address and

data busses or it may latch only the address bus. The iatter can be suf-

ficient if a separate means of examining data in memory is provided (see

Section 3.3). <A suggested configuration for the "data trap" is shown in

Figure 3.3. This circuit can be used to display the contents of the ad-

dress and data busses for both READ and WRITE cycles. The WRITE data is

latched and held during the next READ cycle. Depressing the Latch Reset

switch then opens the inputs to the latches and allows monitoring of the

subsequent READ cycles.

3.1.3 Single Instruction Execution

While it is extremely useful to be able to analyze the execution of

each instruction in detail, it is often sufficient just to look at the gen-

eral program flow. This is particularly useful when examining the opera-

tion of branches and jumps in a program. Single instruction execution is

designed to allow this capability on the MCS6502 which outputs a SYNC sig-

nal.

The operation of the single instruction execution logic is based on

generation of a SYNC signal within the processor. This signal goes high

(> +2.4V DC) during each OP CODE fetch cycle. Single instruction execu-

tion is implemented by using SYNC to force RDY low « +0.4V DC). Under

these conditions, the processor will always stop with an OP CODE address

on the address bus and the OP CODE on the data bus. The timing for this

operation is shown in Figure 3.4. Note that this diagram assumes that the

processor is stopped in an OP CODE fetch cycle. Depressing the Single

processor then stops when the next OP CODE is fetched.

-127-

AB¢
ABI
AB2
AB3

ABS

AB7

AB8

AB10

AB11

AB12

AB13

AB14

AB15

DBO
DBI
DB2
DB3
DB4
DBS
DB6
DB7

o2

R/W

jy

=
4
be
~
®

| |
|
| | 6S
| |
| |g
| | &
| |
L |

|
ee

| | 6s
| | <s
| |g
| |
|
Y

i RESET LATCH

MW Ld

Microprocessor Single Cycle Data Trap

FIGURE 3.3

-~128-

DB¢
DBI
DB2
DB3
DB4
DBS
DB6
DB7

> x ~

TO TEST POINTS, LAMPS, OR HEX. DISPLAYS

D TYPE FLIP — FLOP

-6cT-

NV VII PES LL LS NS NS TN

en PLANS,
HALT SWITCH | f

SING. INST. SW. a
{

RDY \

SYNC

19

PROCESSOR
RUNNING

Single Instruction Execution

5—

5

— —

>-——-—_

5 —

PROCESSOR
STOPPED

IN TQ

FIGURE 3.4

EXECUTE COMPLETE
INSTRUCTION

eNOS A FR

PROCESSOR
STOPPED

3.2 DYNAMIC TESTING

3.2.1 Introduction

Through static testing techniques, the designer should be able to

verify the operation of most of his processor interface hardware, such as

the Bus Expanders and Address Decoders (for selecting ROMs, RAMs, etc.).

However, this is only a first step to assuring proper system operation.

Most peripheral devices cannot be properly tested unless the processor is

operating at full speed. This necessitates full dynamic testing.

Dynamic testing generally involves causing the processor to execute

a program loop, i.e., to execute a repetitive sequence of instructions.

This allows the use of an oscilloscope in examining the processor opera-—

tion. This repetitive operation can be externally induced through the

RES or Interrupt (IRQ or NMI) lines, or it can be a part of the program

being executed. Both techniques play an important role in the system

checkout process.

3.2.2 Externally Induced Loops

The most direct means of causing the processor to execute a loop is

to drive one of the direct inputs (RES, IRQ or NMI)with a signal gen-

erator. This technique can be used to trouble-shoot systems which are only

partially operational since it does not rely on proper execution of a par-

ticular set of instructions to cause looping to occur. However, this tech-

nique can only be used if an oscilloscope can be employed in examining

system operation. To do so requires an effective scope-synchronizing

signal. For this reason, the following section will discuss not only the

signals to be tested and the waveforms which one should see but also the

techniques one may use to assure generation of an effective scope sync.

Probably the most basic operation performed within the processor is

the RESET function. Without the RESET hardware and software operating pro-

perly, the system will never enter its normal operating mode. For this

reason, the first major function to be tested, both statically and dynam-

ically, is the RES input.

A suggested configuration for dynamically testing the RESET input is

his diagiam, the RESET input is being driven from

a signal generator. Between the signal generator and the processor is a D-

type flip-flop to synchronize the chip reset signal to the processor clocks.

-130-

+5V

FROM SIGNAL D
GENERATOR Al

FROM POWER-ON TOSYSTEM <<<
RESET RESET (RES)

tT
ae MANUAL
— RESET

Suggested Configuration

For Dynamic Reset Testing.

FIGURE 3.5

-131-

This synchronizing is extremely important because it stabilizes the data

being displayed on the oscilloscope with respect to the scope sync.

The most effective procedure for testing the dynamic operation of

the RESET function is to reset the system initially at a rate of approxi-

mately one-fifth of the clock rate. This will allow the processor to

execute the first few instructions in the reset sequence before being re-

cycled. The designer can then closely examine the timing of address, data

and R/W signals. Use of the delayed sweep feature available on most modern

oscilloscopes will allow examination of any part of the RESET operation.

When proper operation of the RESET input has been verified, the same

technique can be applied to both the IRQ and the NMI inputs. Driving either

of these inputs with a signal generator synchronized to the processor clocks

will allow a close examination of the dynamic operation of the interrupt

polling sequence. This provides a very important look at the Peripheral

Interface selection logic to assure that all peripheral devices are respond-

ing to the proper address.

3.2.3 Software Loops

During system checkout, the designer must verify the operation of

many simple functions which must all operate properly before the entire sys-

tem is operational. The use of simple software loops will allow a detailed

examination of one function at a time. Most importantly, it allows the

designer to use an oscilloscope to examine events which may occur very in-

frequently and which are normally very difficult to see.

The execution of software loop requires the writing of a program

which ends in a JMP back to the beginning of the program. Once the processor

enters the loop it will continue to execute the same sequence of instructions

until the RESET switch is pushed.

To utilize software loops effectively there must be an event which

happens only once each time the processor executes the loop. This signal

can be used to trigger the oscilloscope. Including a single WRITE operation

in the program allows the R/W signal to be used to trigger the scope. Like-

wise, careful selection of address in the program will allow use of an

address line as a scope sync. Finally, lacking anything else, setting and

resetting a peripheral interface device output pin at the beginning of the

program provides a very effective sync signal.

-132-

3.3 SYSTEM DIAGNOSIS USING HARDWARE PROGRAMMER AIDS

In addition to the techniques described in which the user utilizes oscil-

loscopes and his own innovative techniques for analyzing data, MOS Technology,

Inc. makes available to the user several hardware aids which assist in debugging

of a microcomputer system and also a software aid called the emulator. The

hardware aids are a Keyboard Input Monitor (KIM), a Teletype Input Monitor (TIM),

and a Microcomputer Development Terminal (MDT). Each of these aids is designed

to allow the debugging of microprocessor code without need to resort to scopes

or other data trapping techniques, but rather attempts to reduce the problem of

debugging the code to the same techniques that are available on a large computer

system. .

The basic assumption of each of these devices, either hardware or software,

is that the microprocessor system is connected correctly, all the electrical

characteristics have already been checked and met and that the only problem to

be solved is one of debugging programs and 1/0 hardware which have been entered

into the microcomputer.

Each of the hardware techniques assumes that the user will start his design

sequence with all of his programming being done in some form of random access

memory which is loadable from an I/0 device, examinable by the 1/0 device and

changeable by the I/0 device. This is the normal first step in developing a

microcomputer system and one that should be used prior to committing any of the

hardware to PROMs or alterable memory. The only exception to this is if the

user is taking advantage of the software emulator and if his program is such that

the emulator can give him a significant degree of confidence in his coding in

which case the use of the KIM or TIM devices is primarily that of allowing him

to have final debugging access to his various memory locations. Therefore, the

common characteristic of all these approaches is that by some technique, in the

case of the Emulator by reading an input file, in the case of TIM by reading

in an input tape from the output Cross-Assembler, in the case of KIM loading a

program into memory by hand, and in the case of MDT either assembling the pro-

gram or loading input data from the Cross-Assembler, the program has been

entered into a program storage. Each of these techniques allows the user to

-133-

initialize various memory and register locations and to "start execution" of this

program at a memory location. Techniques are implemented which allow the user

to stop his program at a particular point and analyze the results of the opera-

tions which have just been completed. If the results are correct, the coding

between the start point and the stop point is correct. If the coding is incor-

rect, the user analyzes the data which he displays by use of the I/0 device and

the hardware or software that interfaces it, and determines by inspection of the

data and analysis of his coding what error could cause the results detected.

If the technique of just analyzing coding is not sufficient, each of these

systems has the’ ability to allow the user to go in and re-execute the code with

new data or the original data, only stopping at earlier stop points until he is

able to trap the operation that causes the erroneous data to occur. ‘Both the

emulator and MDT have additional features which allow the user to analyze the

operation of instructions as they occur which is very useful in determining

which part of the program causes operations to be performed incorrectly.

The normal design cycle should actually include a combination of techniques.

If the user is not using MDT, then he should write his code on a Cross—Assembler

and debug much of his loops and non-I/0 programming using the Emulator. The

Emulator has been designed to allow very easy analysis of data paths, loops and

performance of program on a non-hardware basis. It is particularly useful for

the user who is developing routines which have significant loop and subroutining

or any completed algorithm.

The use of emulation has the following advantages:

1. It gives the power of a large machine to allow tracing operations which

are not very feasible at the hardware level.

2. It may indicate prior to the time that the hardware is committed that

more memory or more time is required to perform an operation which may

dramatically change the hardware implementation which is to be committed.

In any case, attempting to bring up the microprocessor system without use

of assemblers and an interface module such as TIM is not the most efficient use

of the designer's time.

For the user who is just starting in microprocessors, the KIM technique is

acceptable because the length and complexibility of the programs to be written

should be shorter and the user can program directly in Hex and debug using the

KIM exclusively.

~134-

3.3.1 KIM--Keyboard Input Monitor

KIM allows the user to key in Hex values into specified memory loca-

tions and to monitor results.

KIM is available to the system designer in several forms. In its

simplest form, a single device of the MCS6530 type including 1024 bytes of

pre-programmed ROM may be included as a component in an existing system.

The KIM array includes a monitor program which provides the following

features:

a) Data input and output control from serial teletypewriters (ASR 33,

Silent 700, etc.)

b) Data input and system control from a 22-key keyboard

c) Address and data display on a 6-digit, 7-segment type display.

A microprocessor system designed to include the KIM array will allow

the designer to perform the following operations:

yboard (KB) or teletypewriter

for entry, display and control.

b) If in KB mode, the user may enter address or data fields from the

Keyboard. The user may display the contents of any address iocation in the

system and can modify the contents of any address location (other than pre-

programmed ROM locations). The step operation (STEP key) provides a con-

venient method for displaying the data contained in successive memory loca-

tions. Program execution may be authorized to begin from any selected

starting address using the RUN key.

c) If in the TTY mode, the user may obtain a printing of the data at

any memory location. He can modify the data contained in any memory loca-

tion. Program listing from any start address to any end address may be

authorized. Paper tapes may be loaded or generated automatically. Finally,

program execution may be initiated from any selected starting address.

d) In either mode, the user terminates program execution using

the STOP key which will return control of the system to the KIM program.

Alternatively, a depression of the RST key causes a total reset of the sys-

tem and a return of the system to KIM program control.

The KIM array is also available to the system designer as a part of

a special design-in sub-system provided in the form of a printed circuit

card. Included on this card are the following functional elements:

-135-

a) MCS6502 microprocessor array

b) MCS6530-002 array (containing the KIM monitor program)

c) 22-key keyboard and mode~select switch

d) 6-digit, 7-segment LED display

e) 1024 x 8 RAM

f) MCS6530-003 array providing an interval timer, 16 I/0 pins, and

64 bytes of RAM

g) All interface circuits for operation with serial teletypewriters.

This subsystem provides the same operating features described

earlier but is supplied as an operating unit requiring the user to provide

only the +5 volt power supply in order to commence operating. As a "stand-

alone" subsystem, the user may enter and debug programs of up to 1024

steps and control the action of up to 16 1/0 pins.

For further details on physical and operating characteristics of the

KIM array and subsystem, the reader is referred to the KIM manual supplied

separately.

3.3.2 TIM--Teletype Input Monitor

TIM is a pre-programmed MCS6530. The application of the Teletype

Input Monitor is to allow the user to interface to an ASCII device such as

a Teletype, CRT, Execuport, etc. using the ASCII serial communication tech-

niques to communicate to and from the microprocessor. This effectively

allows the user to load memory from the keyboard or from paper tape or

cassettes which are attached to his device. By the addition of a single

TTL package to the system, TIM can be configured so that it is the starting

point for the microprocessor, but once the initialization has been accom-

plished it transfers itself out of the start-up memory, changes the rest

of the microprocessor memory to normal configuration and operates trans-

parent to the microprocessor.

The technique for using the TIM to develop a microprocessor system

is primarily after the system is determined to be wired correctly by the

techniques already described. It is then used to debug the user's code by

means of allowing the user to input pre-specified values, execute portions

of the code and examine the results.

It should be noted that because I/0 devices are extension of memory,

debugging techniques are simplified. They can be configured to

-136-

control I/0 devices to test that lights can be lit, switches tested,

motors started and stopped, etc. For instance, all of the connections to

lights and switches can be checked from the teletype keyboard by

writing into the I/0 registers the appropriate code that turns on the

lights. Correct operation of switches can be checked without the program

running by putting the switches in either state and reading the I/0 device

result indicated to the programmer. This type of checking totally shakes

out the 1/0 connections to make sure the 1/0 device is located in the cor-

rect memory address, determines that the wiring to the I/0 devices is cor-

rect and checks on the microprocessor bus.

A rational technique for using either TIM or KIM is to interconnect

the device into the system to get the microprocessor to pass the single-

step start-up sequence and then to use the debugging capability of the TIM

prior to executing any of the user's code to verify that all input/output

connections are correct. In cases such as stopping motors and other devices

which require timing, the proper connection to the motors and other devices

can be checked without the motor itself physically being checked by uncon-

necting leads, opening up connectors and verifying with a scope or a meter

that the microprocessor's influence at that point is as would be expected

on a static basis. Therefore, this technique is recommended as the second

step of a start-up sequence.

Significant details are given in the section on the use of restart

or start sequence and a single cycle operation to verify the interconnec-

tion of most of the system. It should be recalled that the instructions

were given independent of the coding that was available to the programmer.

The advantage of using the TIM or KIM in the start-up check-out is

that there is known code which is guaranteed to be accurate that should be

evoked during this start-up sequence. By looking at the coding of the ROM

as it appears in the documentation on the TIM or KIM, the user can use the

known sequences from the TIM or KIM program to verify the start-up sequence,

thereby removing one more variable. Therefore, all initial systems check-

out should be done using TIM or KIM program first in the start-up sequence

to make sure that the interconnection to TIM and to memory are cor-

rect. Then once the basic operation of TIM has been verified, there

is a known sequence that the TIM will go through dynamically which will

allow the user to verify that the TIM is operational. Then the user should

verify the rest of his memory and I/0 connections by use of writing and

reading in the memory locations using the debugging feature of the TIM or

KIM. This verifies the connection and operation of each of the chips of

the system and will verify all the interconnections to all outboard devices.

Now the problem is truly reduced to making sure that the program-

mer's code is correct and the user's program can be loaded by means of

either through-the-keyboard or through-the-auxiliary devices.

The program can be debugged as a program rather than worrying about

whether or not the problem is one of hardware or software. By definition

other than incorrect timing to I/0 devices, the problem has been reduced to

one of programming mistakes.

For a more detailed discussion on the programming on TIM, the user

is referred to the TIM manual supplied separately.

3.3.3 MDTI--Microcomputer Development Terminal

Almost all of the sections in this report had to do with how one

goes about interconnecting a system and debugging it. MDT is a prepackaged

system and, therefore, should not have the problems described above unless

it is being used in circuit emulation mode. Therefore, the user will pri-

marily be debugging his programs and his basic interconnection to his I/0

devices with the MDT. Therefore, use of the MDT represents a significantly

different technique than described in this manual. This technique is de-

scribed in the MDT manual.

-138-

3.4 MICROPROCESSOR START-UP PROCEDURE

3.4.1 Introduction

This section attempts to tie together all of the techniques previ-

ously discussed into one ordered procedure. This procedure is based on

experience gained in bringing up systems using processors from several

different manufacturers. While it is certainly true that no single pro-

cedure can be expected to catch all the software and hardware errors which

can exist in microcomputer systems, it is hoped that this step-by-step

approach will allow the designer to bring up his system with an absolute

minimum of difficulty.

This procedure assumes the existence of Single Cycle and/or Single

Instruction logic. Any of the System Development tools discussed in Sec-

tion 3.3 will assist the user in bringing up his system. These devices

allow convenient entry of test programs as well as modification of the sys-

tem program and data.

Each step in the procedure includes the following information:

* Section of the System hardware/software to be checked.

* Hardware, test equipment, etc. required to perform the test.

* Action to be taken in implementing the test.

* Expected results.

* Suggested procedures for analyzing failure modes.

It cannot be emphasized too strongly that one must utilize a very

methodical, step-by-step procedure aimed at solving one problem at a time

within the system. It is very easy for several problems to amplify each

other to such an extent that nothing within the system seems to be operat-

ing properly. Correcting problems one at a time will ultimately yield a

complete working system with minimum frustration.

3.4.2 System Power--Step 1

It is generally recommended that first prototypes of microcomputer

systems be built using sockets for the ICs (processor, memories, etc.).

One distinct advantage of this technique is that it allows the designer to

verify that Von and Veg are properly connected to each socket before the

chips are inserted. The Vop line should be within the tolerances specified

about the 5 volt nominal relative to Veg: This basic first step can help

avoid power supply connections which may be fatal to the chips in the sys-

tem.

-139-

After using a voltmeter or oscilloscope to check power connections,

insert the processor into its socket and verify that the additional cur-

rent drain is within specifications for this device.

Before inserting the other devices, examine the address lines, SYNC

line (6502) and the output clocks (6502, 6503) to make sure that the pro-

cessor is generating signals. The address lines should be incrementing

and the sync line should be generating regular, positive going pulses.

The RES line and the RDY line should be high (> +2.4V) for this test.

If the processor appears to be operating and power consumption is

reasonable, the rest of the devices in the system can be inserted into

their sockets.

3.4.3 Basic System Timing--Step 2

Before one can expect a microprocessor system to function, proper

operation of the basic system timing signals (9%), $5, etc.) must be veri-

fied. The most important of these signals is the system clock.

A common fault in MC6800 and MCS6501 systems is generation of input

clocks (@, and $5) which are not full voltage or which have significant

overlap. Another very serious difficulty often encountered is undershoot.

Each of the specifications listed in the data sheet for the system clocks

must be properly met. Figure 3.6a illustrates the problems often en-

countered in clock signals such as undershoot and overlap. Figure 3.6b is

an example of MCS6501 @, and @5 clocks as they would normally appear in a

properly operating system.

In systems based on other than the MCS6501, the clocks which must

be examined are the processor output clocks. In the 6502, both phases (9)

and @5) are available for driving the rest of the system. In this system

it is necessary to check the clock timing very carefully to assure that

the timing of the clock signals within the processor is compatible with

that used on the support chips.

Using an oscilloscope, compare the $, input clock and the $5 clock

presented to the support chips to verify that the delay due to clock buf-

fering does not exceed the allowable maximum.

Static and dynamic analysis of the Reset function can provide very

detailed information on how the system is operating. In fact, it is this

-140-

FIGURE 3.6a — improper Clocks (Note undershoot and overlap)

FIGURE 3.6b — Proper Clocks

MCS6501

Clock Timing Signals

FIGURE 3.6

-141-

o1

o2

ADDRESS BUS LINE

ADDRESS BUS LINE

FIGURE 3.7a — Proper Address Lines

ADDRESS BUS LINE

me ADDRESS BUS LINE

FIGURE 3.7b — Excess Address Line Loading

Address Lines In MCS650X Systems
mrArnND Ae
FLIUUNREL J/

-142-

1

DATA BUS LINE

DATA BUS LINE

o2

R/W

DATA BUS LINE

DATA BUS LINE

The Data Bus in MCS650X Systems

FIGURE 3.8

-143-

step which will verify the operation of most of the basic system hardware.

The tools required are:

* Single Cycle/Single Instruction Logic

* Oscilloscope

a
a Signal generator (for driving RESET)

3.4.4.1 Static Analysis of System Details

Depress the HALT button and then the manual RESET switch; then push

the single cycle switch six times. This will step the processor through the

first part of the BRK sequence and into the RESET vector fetch. At this

time the processor should be generating FFFC on the address bus and the ROM

should have put the low order byte of the RESET vector onto the data bus in

response to this address. This is an excellent time to check the following

very basic items:

A. Address Lines:

Using the oscilloscope, verify that the logic levels on the

address lines are proner an

through any bus expanders onto the memory and peripheral

chips. This is a very important test since improper implemen-

tation of bus expanders is a very common circuit fault.

B. ROM/PROM chip selects:

Using the oscilloscope, verify that the address FFFC does

select the ROM which contains the low order byte of the RESET

vector.

C. Data Bus:

Using the oscilloscope, verify that the voltages on the data

bus pins of the processor are proper. It is important that

these signals be analyzed at the processor to assure proper

operation of any bi-directional bus expanders in the system.

In this test, the most common indication of improper operation

of the data bus expanders is "floating" processor data bus

pins, i.e., the processor data bus pins are being driven

neither high nor low because the bus expanders are in the

open-circuit condition or are reversed.

-144-

D. Miscellaneous Processor Pins:

Using the oscilloscope, briefly examine the other processor

pins (R/W, TRO, NMI, etc.) to assure that there are no volt-~

age level problems detectable at this point. Both of the

interrupt inputs and the R/W output should be high. Examine

the R/W signal on the input to the memory and peripheral

devices.

After these initial tests are complete, it should be possible to

press the single step switch once more to fetch the high order byte of the

interrupt vector fromaddress FFFD. On the next actuation of the single

cycle switch, the processor address bus should contain the RESET vector

which was fetched from memory.

At this point, the processor is ready to execute the system ini-

tialization routine. During initialization, it can be expected that pro-

gram memory will be accessed, peripheral registers will be loaded, and

internal processor registers will be cleared or set to a starting value.

It is extremely useful to execute this routine one instruction at a time to

determine that each time program memory is accessed, the proper instruction

is returned. However, unless a data trap is provided, it will be more

meaningful to utilize dynamic analysis techniques to analyze the operation

of peripheral devices, since most peripheral accesses will be for the pur-

pose of writing either the I/0 control or the control registers in the

peripheral devices.

3.4.4.2 Dynamic Analysis of System Details

The general technique of dynamic analysis is discussed in Section

3.2. The discussion which follows will use this technique to analyze many

of the details of the system operation.

Set up the system as described in Section 3.2.2. After the test

equipment is operating properly, most of the system operation can be veri-

fied using only the oscilloscope.

3.4.4.2.1 Address Bus Verification

The first item which must be checked is the specific timing of

the address lines. These lines will change during the first part of @| but

after the specified period, they should stabilize and remain stable through

-145-

the rest of the cycle. Figure 3.7a shows the waveform which one should ex-

pect to see while examining |, @> and two address lines. In this illus-

tration, one address line is going high and the other is going low. These

lines are being generated within the processor and are guaranteed to oper-

ate properly provided the total loading on the pins is within specifica-

tions. The most common cause of both voltage level and rise time problems

is overloading. Voltage level problems are commonly evidenced by the

"zero" level being too high, i.e., the address buffer is being asked to

sink too much current. Excess capacitance is usually evidenced by the rise

and fall times being too long (Figure 3.7b).

In examining the address lines, it is important that the data be

examined on the processor and directly on the various support chips. This

will assure that any bus expanders in the system are operating properly and

that the addresses are valid where they are actually being used.

3.4.4.2.2 Data Bus Verification

After the addresses have been verified, the next step is to ex-

amine the data bus to verify the validity of data being transferred both

from the processor to the support chips and from the support chips back ~

into the processor.

Figure 3.8 illustrates the waveform which one can expect to see

on the data bus lines. It is very important to note that during $, there

is no way to predict the voltage on the data bus since neither the proces-

sor nor the support chips are driving these lines. However, during 05 the

data bus pins should go either high or low. It is only during O> (high)

that the validity of the data can be verified.

Three very important parameters must be considered when examin-

ing the data bus. These are the voltage levels, the time at which the data

is valid and the delay from the trailing edge of $5 to data becoming in-

valid.

A. Voltage Levels:

The logic levels on the processor data bus must always be

greater than 2.4 volts for a logic 1 and less than 0.4 volts

for a logic @. This is a very basic concept but a quick

check on these levels vary og

can help the designer avoid hours of attempting to make a

-146-

system operate with signals which are actually marginal but

which on the surface appear to be satisfactory.

Another very important item to check is whether or not

the logic "0" voltage is actually going negative (below GND).

It is very important that the logic signals going into all

the chip inputs not be allowed to go below -0.3 volts as

indicated in the specifications.

Data Valid Time:

The time at which data becomes valid indicates the total

time which the processor or memory has available to stabil-

ize the gates and latches used to trap the data within the

chip. For this reason the data must not take too long to

reach either a valid high "1" or a valid low "0." The pri-

mary cause of slow signals on the data bus is excessive

loading, either resistive or capacitive. Carefully check

the devices which are attached to the bus to make sure that

the total loading is within specifications.

Hold Time:

The last important consideration, hold time," is defined as

the time between the trailing edge of the @5 pulse and the

point at which data is no longer valid. A minimum of 10

nsec hold time is required for the processor to trap the

data into its internal input latches. The processor inter-

nal $, pulse is used to gate the contents of the data bus

into these latches. Hold time is also required by the vari-

ous support chips within the system. Carefully check the

signals as they appear on the RAMs, ROMs, etc. to verify

h Ne ee ae EHS

. . . .
t each is being operated in accordance with

-147-

3.4.5 Detailed Component Check

After the dynamic check of the reset routine, the next step is to

attempt to run the system program. The success of this operation will

determine whether or not a further detailed component check is necessary.

It is important to note that the checkout of the system program should

proceed one step at a time in much the same manner as we have approached

the hardware checkout. If a careful examination has been made of all of

the devices, data paths, etc. in the system, the software checkout can

proceed under the assumption that the hardware is fully operational. How-

ever, it is inevitable that doubts will arise. There are times in the

software checkout process that the program will appear to be incorrect;

data won't be going into memory as it should or, in general, some hardware

failure will be indicated. As soon as this happens, the suspected com-

ponents should be examined in detail. In keeping with the policy of "one

step or one problem at a time," it is important that potential hardware

problems not be allowed to invalidate the effort being put into the soft-

ware checkout.

Component problems can be one of two types: component failure,

i.e., a part not operating per specifications; or system failure, i.e., a

part being used wrong in the system. The latter problem can be a result

of incorrect system design or incorrect wiring. The problem of functional

components not operating properly in the system is the one which will be

addressed here. In fact, if there is any doubt about a component being

functional, it should be replaced immediately upon verification of proper

signals to all inputs. If it still does not operate properly, the problem

is most likely system related.

The detailed component check is performed most effectively by load-

ing a small looping program into the system RAM. For this reason, the TIM

or KIM debug software (see TIM and KIM Manuals) can be of significant

value in this process. The procedure involves static and dynamic operation

of a small test program which exercises each of the components in the sys-

tem. The goal of this step should be a complete verification that all chip

selects are operating properly, that all data address lines are operating

properly and that the support chips are driving the processor pronerly.

-148-

The suggested procedure for checkout of each type of component is discussed

separately below.

A. ROMs (PROMS):

The most straightforward component in any microprocessor system

a
itt we 2) fu Q 13 ct © ct i @ ut n 8-bit wor wn oo ir

2 a <ct ~ a af T.- his device simply a

data bus in response to an address. Difficulty with ROMs is

usually caused by improper chip selects or by mis-application

of devices which are not part of the MCS6500 family. For this

reason, static testing of ROMs is usually a very effective first

step. This requires entering a test program into RAM and exe-

cuting this program using the single cycle switch. The program

itself should simply perform a READ (for example, an LDA or LDX

instruction) of a selected word for each ROM chip to be tested.

The chip selects can then be examined and at the same time, the

address lines presented to the chips can be examined along with

the data put on the data bus.

After the chip select, address bus and data bus have been

verified statically, it may be necessary to execute the same

test program dynamically to assure that all chips in the system

are operating at system speed. At this point, it may be neces-

sary to include a WRITE operation (STA, STX, STY, etc.) in the

loop to provide a sync signal.

Analysis of the dynamic operation of the ROMs should involve

first looking at each address and data bus lines directly on the

processor chip. It is here that the address is being generated,

and it is here that the data must meet a speed specification.

If data is not valid at the proper time, the next step is to

determine where excessive delay has been introduced into the

data path from address output, through the ROM and back to the

processor data bus. Keep in mind that it is this entire path

which must operate at speed to assure proper processor opera—

tion. In fact, if the delays are excessive, it may be necessary

to slow down the system clock rate to allow the program data to

reach the processor in time. An alternative solution to this

problem is the implementation of the RDY signal to hold the pro-

-149-

cessor for one cycle each time it fetches data or program from

the ROMs.

Although the problems discussed above may be encountered at

this point, it is much more likely that a wiring error will

cause a single address or data line to be excessively loaded so

that it operates slow or not at all. This problem can usually

be detected and fixed quite easily by looking at each component

in the data path.

RAMs:

Operation of the RAMs in a microprocessor system can be checked

in much the same manner as the ROMs. Execution of a test loop

program both statically and dynamically for each chip in the

system should be sufficient to verify proper operation of the

RAMs in the system. For each RAM, both a WRITE and a READ oper~

ation should be included in the test loop. This will allow

checkout of data transfers in both directions.

During singie cycle execution of the test loop, the proces~

sor will stop only in the RAM read operations. However, this

will allow a static check of the chip select logic and the

address and data lines. Running the program dynamically will

allow verification that the data and address signals presented

to the RAMs during the WRITE operation are within specifica-

tion for the RAM being used in the system and that the total

delays through the address, RAM, and data bus path are within

specifications for the processor during the READ operations.

As with the ROMs, the most likely problem to be encountered at

this point is wiring errors which cause a specific device to

operate improperly. A careful check of each pin will allow

detection of this type of probiem.

PIAs:

The peripheral interface devices (6520, 6530, etc.) can all be

checked out in the manner described above. However, since these

chips do many different operations, the test program must be

much more complex than that required for the ROM and RAM.

-159-

However, it can usually be limited to testing only those func-

tions which are used in the system.

A large part of the operation of the peripheral interface

devices can be verified by doing a WRITE followed by a READ for

each register on the chip. This will allow a complete checkout

of the data paths between the processor and the chips as well as

a checkout of all the chip select functions. However, a more

complete analysis may be required to verify that data is appear-

ing properly on the output pins of the peripheral chip and that

data on the inputs is being reflected properly back into the

processor. This will involve disconnecting the peripheral sub-

system which the processor is attempting to drive and manually

putting data into the inputs. A separate test can verify the

validity of output data.

After the s n hardware has been examined in the detail discussed above,

the designer will have developed confidence that his system can operate properly

once the system program is completely debugged. Verification of the system pro-

gram should proceed with a section-by-section checkout as discussed above. Each

subroutine, interrupt routine, etc. should be examined separately. They can

then be combined to form the major peripheral operating routines, arithmetic

routines, etc. that make up the system. The final result should be a function-

ing program which has been examined in all its details running on a system

which is fully operational.

-151-

APPENDIX A

SUMMARY OF SINGLE CYCLE EXECUTION

This section contains an outline of the data on both the address bus and

the data bus for each cycle of the various processor instructions. It tells

the system designer exactly what to expect while single cycling through a

program.

Note that the processor will not stop in any cycle where R/W is a 0 (write

cycle). Instead, it will go right into the next read cycle and stop there. For

this reason, some instructions may appear to be shorter than indicated here.

All instructions begin with TO and the fetch of the OP CODE and continue

through the required number of cycles until the next TO and the fetch of the

next OP CODE.

While the basic terminology used in this appendix is discussed in the Pro-

gramming Manual, it has been defined below for ease of reference while studying

Single Cycle Execution.

OP CODE--The first byte of the instruction containing the operator and mode of

address. .

OPERAND--The data on which the operation specified in the OP CODE is performed.

BASE ADDRESS--The address in Indexed addressing modes which specifies the loca-

tion in memory to which indexing is referenced. The high order of byte

of the base address (ABO8 to AB15) is BAH (Base Address High) and the

low order byte of the base address (ABOO to ABO7) is BAL (Base Address

Low) .

EFFECTIVE ADDRESS--The destination in memory in which data is to be found. The

effective address may be loaded directly as in the case of Page Zero

and Absolute Addressing or may be calculated as in Indexing operations.

The high order byte of the effective address (ABO8 to AB15) is ADH and

the low order byte of the effective address (ABOO to ABO7) is ADL.

INDIRECT ADDRESS--The address found in the operand of instructions utilizing

(Indirect),Y which contains the low order byte of the base address.

IAH and IAL represent the high and low order bytes.

JUMP ADDRESS--The value to be loaded into Program Counter as a result of a

Jump instruction.

A. 1. SINGLE BYTE INSTRUCTIONS

ASL DEX NOP TAX TYA
CLC DEY ROL TAY

CLD INX SEG TSX
CLI INY SED TXA

CLV LSR SEI TXS

These single byte instructions require two cycles to execute. During the

second cycle the address of the next instruction in program sequence will be

placed on the address bus. However, the OP CODE which appears on the data bus

during the second cycle will be ignored. This same instruction will be fetched

on the following cycle at which time it will be decoded and executed. The ASL,

ROL and LSR instructions apply to the accumulator mode of address.

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

TL PC +1 OP CODE 1

(Discarded)

TO PC + 1 OP CODE 1 Next Instruction

A. 2. INTERNAL EXECUTION ON MEMORY DATA

. ADC CMP EOR LDY

AND CPX LDA ORA

BIT CPY LDX SBC

The instructions listed above will execute by performing operations in-

side the microprocessor using data fetched from the effective address. This

total operation requires three steps. The first step (one cycle) is the OP CODE

fetch. The second (zero to four cycles) is the calculation of an effective

address. The final step is the fetching of the data from the effective address.

Execution of the instruction takes place during the fetching and decoding of

the next instruction.

b> 2.2.

2.3.

Immediate Addressing (2 cycles)

| ls re ©

Address Bus

Address Bus

PC

PC +1

00, ADL

PC + 2

Data Bus

OP CODE

Data

OP CODE

Data Bus

OP CODE

ADL

Data

OP CODE

Absolute Addressing (4 cycles)

Tm

TO

T1

T2

T3

TO

Address Bus

PC

PCE +1

PC + 2

ADH, ADL

PC + 3

Data Bus

OP CODE

ADL

ADH

Data

OP CODE

Indirect, X Addressing (6 cycles)

in
TO

Tl

T2

T3

T4

T5

TO

Address Bus

PC

PC +1

00, BAL

00, BAL + X

00, BAL +
X+1

ADH, ADL

PC + 2

Data Bus

OP CODE

BAL

Data

(Discarded)

ADL

ADH

Data

OP CODE

RoR

ps =

RPP FP

Comments

Fetch OP CODE

Fetch Data

Next Instruction

Comments

Fetch OP CODE

Fetch Effective Address

Fetch Data

Next Instruction

Comments

Fetch OP CODE

Fetch low order Effective

Address byte

Fetch high order Effective

Address byte

Fetch Data

Next Instruction

Comments

Fetch OP CODE

Fetch Page Zero Base

Address

Fetch low order byte of
Effective Address

Fetch high order byte of
Effective Address

Fetch Data

Next Instruction

2.5.

2.6.

Absolute, X or Absolute, Y Addressing (4 or 5 cycles)

Tn

TO

Tl

T2

T3

T4*

TO

Address Bus

PC

PC + 1

PC + 2

ADL: BAL +

index register

ADH: BAH + C

ADL: BAL +

index register

ADH: BAH + 1

PC + 3

Data Bus

OP CODE

BAL

BAH

Data*

Data

OP CODE

R/W
1

1

1

Comments

Fetch OP CODE

Fetch low order byte of

Base Address

Fetch high order byte of

Base Address

Fetch data (no page cross-

ing)

Carry is @ or 1 as re-
quired from previous add
operation

Fetch data from next page

Next Instruction

*If the page boundary is crossed in the indexing operation, the data
fetched in T3 is ignored.

cycie is bypassed.
If page boundary is not crossed, the T4

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles)

T3

TO

Address Bus Data Bus

PC OP CODE

PC +1 BAL

00, BAL Data

(Discarded)

00, BAL + Data
index

register

PC + 2 OP CODE

R/W
1

1

Comments

Fetch OP CODE

Fetch Page Zero Base

Address

Fetch Data (no page cross-

ing)

Next Instruction

T3

T4

T5*

TO

Address Bus

PC

00, IAL

OO, IAL +1

ADL: BAL + Y

ADH: BAH + C

ADL: BAL + Y

ADH: BAH + 1

PC + 2

Data Bus

OP CODE

TAL

BAL

BAH ©

Data*

Data

OP CODE

Indirect, Y Addressing Mode (5 or 6 cycles)

R/W
1

1

1

Comments.
Fetch OP CODE

Fetch Page Zero Indirect

Address

Fetch low order byte of

Base Address

Fetch high order byte of

Base Address

Fetch Data from same page

Carry is 0 or l as re-
quired from previous add

operation

Fetch Data from next page

Next Instruction

*If page boundary is crossed in indexing operation, the data fetch in
T4 is ignored.
passed.

STA

STX
STY
hy oe

STORE OPERATIONS

If page boundary is not crossed, the T5 cycle is by-

The specific steps taken in the Store Operations are very similar to

those taken in the previous group (Internal execution on memory data). However,

in the Store Operation, the fetch of data is replaced by a WRITE (R/W = 0)

cycle.

on indexing operations.

A. 3.1.

Tn

TO

T1

T2

TO

PC

PC +1

00, ADL

PC + 2

Zero Page Addressing (3 cycles)

Address Bus Data Bus

OP CODE

ADL

Data

OP CODE

No overlapping occurs and no shortening of the instruction time occurs

Comments

Fetch OP CODE

Fetch Zero Page Effective

Address

Write internal register

to memory

Next Instruction

3.2.

3.3.

3.4.

Absolute Addressing (4 cycles)

To
TO

T1

T2

T3

TO

Address Bus

PC

PC + 1

PC + 2

ADH, ADL

PC + 3

Data Bus

OP CODE

ADL

ADH

Data

OP CODE

Indirect, X Addressing (6 cycles)

Tn
TO

T1

lar i)

T4

T5

TO

Address Bus

PC

PC +1

OO, BAL

00, BAL +X

00, BAL +
X+1

ADH, ADL

PC +2

Data Bus

OP CODE

BAL

Data

(Discarded)

ADL

ADH

Data

OP CODE

R/W
1

1

R/W
1

=

Comments
Fetch OP CODE

Fetch low order byte of

Effective Address

Fetch high order byte of

Effective Address

Write internal register

to memory

Next Instruction

Comments

Fetch OP CODE

Fetch Page Zero Base

Address

Fetch low order byte of

Effective Address

Fetch high order byte of

Effective Address

Write internal register

to memory

Next Instruction

Absolute, X or Absolute, Y Addressing (5 cycles)

Tn
TO

TL

T2

T3

T4

TO

Address Bus

PC + 2

ADL: BAL +

index

register

ADH: BAH + C

ADH, ADL

PC + 3

Data Bus

OP CODE

BAL

BAH

Data

(Discarded)

Data

OP CODE

A-6

R/W
L
4
+

Comments

Fetch OP CODE

Fetch Low order byte of

Base Address

Fetch high order byte of

Base Address

Write internal register

to memory

Next Instruction

A. 3.5.

Tn
TO

Tl

T2

T3

TO

In
TO

T1

T2

T3

T4

T5

TO

ASL

DEC

INC

Address Bus Data Bus

PC OP CODE

PC +1 BAL

02, BAL Data

(Discarded)

ADL: BAL + Data

index

register

PC + 2 OP CODE

Address Bus Data Bus

PC OP CODE

PC +1 TAL

00, IAL BAL

00, IAL +1 £BAH

ADL: BAL + Y Data

(Discarded)

ADH: BAH

ADH, ADL Data

PC + 2 OP CODE

READ-~-MODIFY--WRITE OPERATIONS

LSR

ROL

ROR

R/W
1

1

Indirect, Y Addressing Mode (6 cycles)

R/W
1

1

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles)

Comments

Fetch OP CODE

Fetch Page Zero Base

Address

Write internal register

to memory

Next Instruction

Comments

Fetch OP CODE

Fetch Page Zero Indirect
Address

Fetch low order byte of

Base Address

Fetch high order byte of
Base Address

Write Internal Register

to memory

Next Instruction

The Read--Modify--Write operations involve the loading of operands

from the operand address, modification of the operand and the resulting modi-

fied data being stored in the original location.

Note: The ROR instruction will be available on MCS650X microprocessors

after June, 1976.

4.1.

- 4.2.

. 4.3.

Zero Page Addressing (5 cycles)

Tn
TO

TL

T2

T3

T4

TO

Address Bus

PC

PC +1

00, ADL

00, ADL

00, ADL

PC + 2

Data Bus

OP CODE

ADL

Data

Data

Modified

Data

OP CODE

Absolute Addressing (6 cycles)

Tn
TO

Tl

T2

T3

T4

T5

Td

Zero Page, X Addressing (6 cycles)

Tn
TO

Tl

T2

T3

T4

T5

TO

Address Bus

PC

PC + 1

PC + 2

ADH, ADL

ADH, ADL

ADH, ADL

PC + 3

Address Bus

PC

PC + 1

00, BAL

ADL: BAL + X

(without

carry)

ADL: BAL + X

(without
carry)

ADL: BAL + X

(without

carry)

PC + 2

Data Bus

OP CODE

ADL

ADH

Data

Data

Modified

Data

OP CODE

Data Bus

OP CODE

BAL

Data

(Discarded

Data

Data

Modified

Data

OP CODE

A-8

R/W
1

1

Comments

Fetch OP CODE

Fetch Page Zero Effective

Address

Fetch Data

Write modified Data back

to memory

Next Instruction

Comments

Fetch OP CODE

Fetch low order byte of
Ff fartriwva Addrace BHrrecrive Address

Fetch high order byte of
Effective Address

Write modified Data back

into memory

Next Instruction

Comments

Fetch OP CODE

Fetch Page Zero Base

Address

Fetch Data

Write modified Data back

into memory

Next Instruction

A. 4.4.

. el.

Absolute, X Addressing (7 cycles)

Tn Address Bus Data Bus R/W

TO PC OP CODE

Tl PC + 1 BAL 1

T2 PC + 2 BAH 1

T3 ADL: BAL + X Data 1
(Discarded)

ADH: BAH + C

T4 ADL: BAL + X Data 1

ADH: BAH + C

T5 ADH, ADL Data 0

T6 ADH, ADL Modified 0
Data

TO PC + 3 OP CODE 1

MISCELLANEOUS OPERATIONS

BCC BRK PHP

BCS BVC PLA

BEQ BVS PLP

BMT JMP RTI

BNE JSR RTS

BPL PHA

Push Operation--PHP, PHA (3 cycles)

To Address Bus Data Bus R/W

TO PC OP CODE 1

Tl PC +1 OP CODE 1

(Discarded)

T2 Stack Pointer* Data 0

TO PC + 1 OP CODE 1

*Subsequently referred to as "Stack Ptr."

Comments

Fetch OP CODE

Fetch low order byte of

Base Address

Fetch high order byte of
Base Address

Fetch Data

Write modified Data back

into memory

New Instruction

Comments
Fetch OP CODE

Write Internal Register

into Stack

Next Instruction

A. 5.2. Pull Operations--PLP, PLA (4 cycles)

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

Tl PC + 1 OP CODE 1

(Discarded)

T2 Stack Ptr. Data 1

(Discarded)

T3 Stack Ptr. +1 Data 1 Fetch Data from Stack

TO PC + 1 OP CODE 1 Next Instruction

A. 5.3. Jump to Subroutine--JSR (6 cycles)

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

Tl PC + 1 ADL 1 Fetch low order byte of

Subroutine Address

T2 Stack Ptr. bata i

(Discarded)

T3 Stack Ptr. PCH 0 Push high order byte of

program counter to Stack

T4 Stack Ptr. - 1 PCL 0 | Push low order byte of

program counter to Stack

T5 PC + 2 ADH 1 Fetch high order byte of
Subroutine Address

TO Subroutine OP CODE 1 Next Instruction
Address (ADH,
ADL)

A-10

Break Operation--(Hardware Interrupt)-BRK (7 cycles)

Address Bus To
TO

T1

T3

T4

T5

T6

TO

PC

PC + i

(PC on hard-

ware inter-

rupt)

Stack Ptr.

Stack Ptr.

Stack Ptr.

FFFE

(NMI-FFFA)

(RES-FFFC)

FFFF

(NMI-FFFB)

(RES~FFFD)

Interrupt Vec-

tor (ADH, ADL)

Data Bus R/W

OP CODE 1

Data 1

(Discarded)

PCH 0

PCL 0

P 0

ADL 1

ADH 1

OP CODE 1

Return from Interrupt-RTI (6 cycles)

Tn
TO

T1

T2

T3

T4

T5

TO

PC

PC + 1

Stack Ptr.

Stack Ptr.

Stack Ptr.

Stack Ptr.

PCH, PCL

Address Bus

+1

+ 2

+ 3

Data Bus R/W

OP CODE 1

Data 1

(Discarded)

Data 1

(Discarded)

Data 1

Data 1

Data 1

OP CODE 1

Comments

Fetch BRK OP CODE (or

force BRK}

Push high order byte of
program counter to Stack

Push low order byte of

program counter to Stack

Push Status Register to

Stack

Fetch low order byte of

interrupt vector

Fetch high order byte of

interrupt vector

Comments

Fetch OP CODE

Pull P from Stack

Pull PCL from Stack

Pull PCH from Stack

Next Instruction

A.5.6.1.

A.5.6.2.

A. 5. 7.

Jump Operation-—JMP

Tn
TO

T1

T2

TO

T4

TO

Address Bus

PC

PC +1

PC + 2

ADH, ADL

Address Bus

PC

PC + 1

tJ oO} + K

IAH, IAL

TAH, IAL + 1

ADH, ADL

Data Bus

OP CODE

ADL

ADH

OP CODE

Data Bus

OP CODE

IAL

ADH

OP CODE

R/W
1

FF

Return from Subroutine--RTS (6 cycles)

In
TO

Tl

T3

T4

T5

TO

Address Bus

PC

PC +1

Stack Ptr.

Stack Ptr. +1

Stack Ptr. + 2

PCH, PCL (from
Stack)

PCH, PCL + 1

Data Bus

OP CODE

Data

(Discarded)

Data

(Discarded)

PCL

PCH

Data

(Discarded)

OP CODE

A-12

R/W
1

1

bh

Comments

Fetch OP CODE

Fetch low order byte of

Jump Address

Fetch high order byte of

Jump Address

Next Instruction

Comments

Fetch OP CODE

Fetch low order byte of

Indirect Address

Fetch high order byte of

Indirect Address

Fetch low order byte of

Jump Address

Fetch high order byte of
Jump Address

Next Instruction

Comments

Fetch OP CODE

Pull PCL from Stack

Pull PCH from Stack

Next Instruction

A. 5.8. Branch Operation--BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS (2, 3, or 4
cycles)

To Address Bus

TO PC

TL PC + 1

T2* PC +2 +

offset (w/o
carry)

T3** PC + 2 +

offset (with

carry)

Data Bus

OP CODE

offset

OP CODE

OP CODE

*Skip if branch not taken

R/W
1

bt

Comments

Fetch OP CODE

Fetch Branch Offset

Offset Added to Program eae we

Counter

Carry Added

**Skip if branch not taken; skip if branch operation doesn't cross page
boundary.

A-13

© a

; , , .

MOS TECHNOLOGY, INC.
VALLEY FORGE CORPORATE CENTER

950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401

TEL: (215) 666-7950. TWX:510/660/4033

